SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处送往y处,嘟嘟需要为供水公司找到一条从A至B的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了.嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项. 在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗.消毒等等.嘟嘟在控制中心一声令下,这些水…
洛谷题目传送门 思路分析 在一个图中,要求路径上最大边边权最小,就不难想到最小生成树.而题目中有删边的操作,那肯定是要动态维护啦.直接上LCT维护边权最小值(可以参考一下蒟蒻的Blog) 这时候令人头疼的问题又冒出来了......删掉一条边以后,又不好从树断开后的两边选出最小的边在连上.这是根本维护不了的. 于是蒟蒻又get到了一个新套路--顺序解决不了的问题,可以离线询问,反过来处理.原来的删边变成了加边,就很方便了.直接split找出环上的最大边,当前要加的边比它小就替换掉. 一个做法的问题…
题目链接 洛谷(COGS上也有) 不想去做加强版了..(其实处理一下矩阵就好了) 题意: 有一张图,求一条x->y的路径,使得路径上最长边尽量短并输出它的长度.会有<=5000次删边. 这实际上就是动态地维护MST.用LCT维护MST,路径询问也能直接查询,每次删边看这条边是否在MST上. 只有1000个点!边直接矩阵存. 而且删边次数很少,于是最初想的是每次删边用堆优化Prim O(nlogn)重新求一遍MST.但是\(5000*1000*10=5e7\)..(也许行吧) 日常删边改成加边,…
问题描述 SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处送往y处,嘟嘟需要为供水公司找到一条从A至B的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了.嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项. 在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗.消毒等等.嘟嘟在控制中心一声令…
Code: #include<bits/stdc++.h> #define maxn 1200000 #define N 120000 using namespace std; char *p1,*p2,buf[100000]; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++) int rd() {int x=0,f=1; char c=nc(); while(c<…
这个题和魔法森林感觉有很相近的地方啊 同样也是维护一个类似最大边权最小的生成树 但是不同的是,这个题是有\(cut\)和询问,两种操作.... 这可如何是好啊? 我们不妨倒着来考虑,假设所有要\(cut\)的边全都不存在,倒序做这个问题,不就是相当于在支持\(link\)操作吗? 那么就和之前的问题大致上是一样的了 对于\(u->v\) 如果\(findroot(u)!=findroot(v)\),就直接连边. 如果\(findroot(u)==findroot(v)\),就判断原来两个点之间的…
\(\color{#0066ff}{ 题目描述 }\) SC 省 MY 市有着庞大的地下水管网络,嘟嘟是 MY 市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从 xx 处送往 yy 处,嘟嘟需要为供水公司找到一条从 AA 至 BB 的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了.嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项. 在处理每项送水任务之…
[题解] 我们把操作倒过来做,就变成了加边而不是删边.于是用LCT维护动态加边的最小生成树就好了.同样要注意把边权变为点权. #include<cstdio> #include<algorithm> #define N 200010 #define rg register #define ls (c[u][0]) #define rs (c[u][1]) using namespace std; int n,m,q,top,tot; ],rev[N],mx[N],pos[N],va…
题目大意:给定 N 个点,M 条边的无向图,支持两种操作:动态删边和查询任意两点之间路径上边权的最大值最小是多少. 题解: 引理:对原图求最小生成树,可以保证任意两点之间的路径上边权的最大值取得最小值. 证明:任取两点 x, y,若 x, y 的路径上最大值最小的边不在最小生成树的路径上,可以将那条边加入最小生成树中,并删去由这条边的加入所带来的环中边权最大的那条边,可以使得最小生成树更小,产生矛盾,证毕. 有了引理之后,问题转化成了维护支持动态删边的最小生成树.发现删边可能会导致最少生成树不断…
P4172 [WC2006]水管局长 LCT维护最小生成树,边权化点权.类似 P2387 [NOI2014]魔法森林(LCT) 离线存储询问,倒序处理,删边改加边. #include<iostream> #include<cstdio> #include<cstring> #define rint register int using namespace std; inline void Swap(int &a,int &b){a^=b^=a^=b;}…