bzoj 1072 状压DP】的更多相关文章

1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2293  Solved: 1448[Submit][Status][Discuss] Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Input 输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中…
我们用w[i][j]来表示,i是一个二进制表示我们选取了s中的某些位,j表示这些位%d为j,w[i][j]则表示这样情况下的方案数,那么我们可以得到转移.w[i|(1<<k)][(j*10+s[k]-'0')%d]+=w[i][j]. 假设s中有x个3,那么我们算出的状态中同样的数我们算了x!次,最后除掉就好了. /************************************************************** Problem: 1072 User: BLADEVI…
879: [Sdoi2009]Bill的挑战 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 852  Solved: 435[Submit][Status][Discuss] Description Input 本题包含多组数据.  第一行:一个整数T,表示数据的个数.  对于每组数据:  第一行:两个整数,N和K(含义如题目表述).  接下来N行:每行一个字符串. T ≤ 5,M ≤ 15,字符串长度≤ 50. Output 如题 Sample I…
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4130  Solved: 2390[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K…
传送门 题目大意: 给两个数组, 数组中的两个元素可以合并成两元素之和,每个元素都可以分裂成相应的大小,问从数组1变化到数组2至少需要多少步? 题目分析: 看到数据范围\(n<=10\), 显然是在提醒我们状压.用sum[i]表示i状态的面积总和. 对于任意一个数组\(1\)和数组\(2\)(\(sum\)值必须相等才能变化),变化的最劣情况是将数组\(1\)合并成1个再分成数组\(2\),步数为\(n1 + n2 - 2\),然而如果数组\(1\)的一个子集\(k\)和数组\(2\)的一个子集…
思路: 状压一下 就完了... f[i]表示选了的集合为i 转移的时候判一判就好了.. //By SiriusRen #include <cstdio> #include <cstring> using namespace std; ][],f[*],F; int main(){ scanf("%d",&cases); while(cases--){ scanf("%d",&n); ;i<(<<n);i++)…
思路: f[i][j][S]表示从i到j压成S状态 j-m是k-1的倍数 $f[i][j][S<<1]=max(f[i][j][S<<1],f[i][m-1][S]+f[m][j][0]),$$f[i][j][S<<1|1]=max(f[i][j][S<<1|1],f[i][m-1][S]+f[m][j][1]);$ 为了区分001 01 和1 更新的时候要新开一个数组记录 最后再更新 //By SiriusRen #include <cstdio&g…
因为最多有8个'X',所以我们可以用w[i][s]来表示现在我们填了前i个数,填的X的为S,因为每次新加进来的数都不影响前面的最小值,所以我们可以随便添加,这样就有了剩下所有位置的方案,每次都这样转移. 但是这样会造成不是规定的地方出现局部最小值的情况,对于这样的情况,我们只需要枚举所有可能成为局部最小值的不合法状态来做容斥就可以了. 反思:这道题的容斥开始写错了,本来应该是判奇偶来判断正负,写成了全是负的,还是A了,应该是后面的容斥没有合法方案所以符号无所谓的关系,真是rp++. /*****…
我们设w[i][s]为当前到第i关,手中的物品为s的时候,期望得分为多少,其中s为二进制表示每种物品是否存在. 那么就比较容易转移了w[i][s]=(w[i-1][s']+v[j]) *(1/k),其中j为枚举当前关可能出现的物品,s‘为s的子集且s’与s只可能相差第j位的物品,且s'包括j物品的所有前提物品,因为每个物品都是随机出现的,所以乘上出现的概率(1/k),因为我们采取的是最优策略,所以对于每个物品的出现我们还需要和w[i-1][s]取一个max,代表这个物品即使我们能取,也可能不取.…
思路: f[i][j] i表示集合的组成 j表示选最后一个数 f[i][j]表示能选的方案数 f[i|(1<< k)][k]+=f[i][j]; k不属于i j属于i且符合题意 最后Σf[(1<< n)-1][i]就是答案了 注意用long long //By SiriusRen #include <cmath> #include <cstdio> using namespace std; #define int unsigned long long int…
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <set>…
BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f[i][s]=f[i-1][s]+dis[i]\)),然后再和不去\(i\)商店的\(f[i-1]\)取个\(\min\). 复杂度是\(O(nm2^m)\)吗... 可以优化,处理\(f[s]\)表示在某家商店买\(s\)集合的物品的最小代价.然后令\(g[s]\)表示考虑所有商店买\(s\)集合…
传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度数的奇偶性状态是\(k\)(用二进制表示,度数为奇则对应位是1,反之为0)的方案数. 然后对每个状态枚举\(i\)要和区间\([i - K, i - 1]\)中的谁连边,如果\(i\)和\(i - p\)连边的话,新的状态\(k'\)就是 k ^ (1 << p) ^ 1(二进制第\(x\)位表示…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4042 (Luogu) https://www.luogu.org/problem/P4757 题解 挺神仙的题. 观察到两个重要性质: (1) 只有不影响任何已选方案的时候,才需要去考虑是否要选择\(u\)的子树内往上走的链.(因为链不带权值) (2) 如果要选择\(u\)子树内往上走的链,那么最多选择一条. 由此可知,我们可以记录哪些链在\(u\)子树内的所有方案中是必…
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K &…
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3112  Solved: 1816[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K &…
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1087 状压dp是第一次写啊,我也是才学TAT.状压dp一般都用一个值表示集合作为dp的一个状态,然后根据集合和dp的性质转移.通常用于啥啥啥..... 我引用些吧 我们知道,用DP解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态.但是有这样的一些题目,它们具有DP问题的特性,但是 状态中所包含的信息过多,如果要用数组来保存状态的话需要四维以上的数组.于是,我们就…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的点都连通的最小费用. [思路] 题目所求斯坦纳森林. 如果我们知道满足颜色集合S连通的最小值g[S],则有转移式: G[S]=min{ g[s] , G[S’]+G[S-S’] } 则G[(1<<C)-1]即答案,G[S]定义为使得颜色集合S中所有相同颜色的点都连通的最小值. 这里的g[S],其实…
Description  Input 本题包含多组数据. 第一行:一个整数T,表示数据的个数. 对于每组数据: 第一行:两个整数,N和K(含义如题目表述). 接下来N行:每行一个字符串. Output 1 2 1 a? ?b Sample Input 50 Sample Output 对于30%的数据,T ≤ 5,M ≤ 5,字符串长度≤ 20: 对于70%的数据,T ≤ 5,M ≤ 13,字符串长度≤ 30: 对于100%的数据,T ≤ 5,M ≤ 15,字符串长度≤ 50. [思路] 状压D…
Description 小F 的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭.学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满意的菜肴.当然,不同的人口味也不一定相同,但每个人的口味都可以用一个非负整数表示.由于人手不够,食堂每次只能为一个人做菜.做每道菜所需的时间是和前一道菜有关的,若前一道菜的对应的口味是a,这一道为b,则做这道菜所需的时间为(a or b)-(a and b),而做第一道菜是不需要计算时间的.其中,or 和and 表示整数逐位或运算及逐位与运算,C语言中对应的运…
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   #define b(x) (1 &l…
n1+n2次一定可以满足..然后假如之前土地集合S1的子集subs1和之后土地集合S2的子集subs2相等的话...那么就少了2个+操作...所以最后答案就是n1+n2-少掉的最多操作数, 由状压dp完成... ------------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm>   u…
状压dp.... 我已开始用递归结果就 TLE 了... 不科学啊...我dp基本上都是用递归的..我只好改成递推 , 刷表法 将全部公司用二进制表示 , 压成一个数 . 0 表示破产 , 1 表示没破产 . dp( S ) 表示 S 状态是否能够达到 , 能为 1 ( true ) , 不能为 0 ( false ) . dp( S ) =  max( dp( S ^ { x } ) , ( S & x == 0 && ∑debt > 0 ) ---------------…
早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 O( 2^n + 3^n ) 可以过 ---------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&g…
水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ---------------------------------------------------------------------------------- #include<bits/stdc++.h>   #define rep(i, n) for(int i = 0; i < n; ++i) #define clr…
这题太难了...看了30篇题解才整明白到底咋回事... 核心思想:状压dp+搜索+容斥 首先我们分析一下,对于一个4*7的棋盘,低点的个数至多只有8个(可以数一数) 这样的话,我们可以进行一个状压,把所有的低点压进来 然后我们从小到大枚举所有数,转移即可 记状态f[i][j]表示到了第i个数,低点的状态为j的方案数 那么在转移的时候,有两个转移方向: ①.如果第i个数放在低点上,那么我们可以枚举所有的低点k,如果低点没有在状态里,有: dp[i][j|(1<<k)]+=dp[i-1][j] ②…
题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的,先使这整个子集内满足平衡,求一棵最小生成树就一定可以了. 这样可能会不最优,我们可以用更小的子集(小的话还是最优的)去更新大的. 还需要合并这些子集.将任意两个\(\sum A_i=0\)的子集都是合法的,且会更新到所有情况. \(2^n\times 2^n\)枚举\(\sum A_i=0\)的子集…
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #define MAXN 140 #define MOD 30031 using namespace std; struct Matrix { int num[MAXN]…
状压DP f(i,j,k)表示前i−1个人已经吃了饭,且在i之后的状态为j的人也吃了饭(用二进制表示后面的状态),最后吃的那个人是i之后的第k个 (注意k可以是负数) 然后 如果j&1=1那么就表明第i个人也是吃了的,所以可以转移到f(i+1,j>>1,k−1) 否则就枚举下一个吃饭的人,转移到f(i,j+1<<l,l) 这么看也不是很难吧哈.. # include <cstdio> # include <cstring> # include <…
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n.给定n,k,p,求满足要求的方案数%30031.n<=10^9,k<=p<=10. [算法]状压DP+矩阵快速幂 [题解]开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了.考虑相邻停靠点没有关键信息,只能状压. 因为车都是从头开到尾的,所以直接考虑i~i-p+1的…