Spark Job Scheduling】的更多相关文章

最近由于项目需要在研究spark相关的内容,形成了一些技术性文档,发布这记录下,懒得翻译了. There are some spaces the official documents didn't explain very clearly, especially on some details. Here are given some more explanations base on the practices  I did  and the source codes I read these…
参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用SparkConf对象或通过Java系统属性进行设置. 可以使用环境变量通过conf/spark-env.sh每个节点上的脚本来设置每台机器的设置,例如IP地址. 日志记录可以通过配置log4j.properties. Spark属性控制大多数应用程序设置,并为每个应用程序单独配置.这些属性可以直接在一…
转载自:    spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库import org.apache.spark._ object WordCount { def main(args: Array[String]) { // 建立spark运行上下文 val sc = new SparkContext("local[3]", "WordCount&quo…
Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分配时的最小粒度是一个静态的partition. 依据应用对资源的申请需求为其分配静态的partition(s)是Spark支持的最简单的调度策略. 我们已经知道,不同的应用有各自的Spark Context且占用各自的JVM和executor(s).依据Spark Job Scheduling文档的…
Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1] 简介:雅虎发布的一份各种流处理引擎的基准测试,包括Storm, Flink, Spark Streaming 动机:贴近生产环境,使用Kafka和Redis进行数据获取和存储,设计并实现了一个真实的流处理基准. 结论:由于只是一篇基准测试报告,其最重要的就是结论.该论文结论如下:Storm, Flink延迟更小,更加接近于真正的"实时&q…
Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-preview/ Ref: Apache Spark3.0什么样?一文读懂Apache Spark最新技术发展与展望 2. Accelerator Aware Scheduling Spark依赖Accelerator Aware Scheduling来感知GPU计算资源,从而调度深度学习任务.实际上…
延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些资源的最大(或者最优)locality级别,如果存在task满足资源的locality,那从最优级别的hash表.也就是task和excutor都有loclity级别,如果能找到匹配的task,那从匹配的task中找一个最优的task.    =====================延迟调度算法=…
spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pdf 同时它也是hadoop的调度算法. Abstract delay scheduling: when the job that should be scheduled next according to fairness cannot launch a local task, it waits f…
经过前面文章的SparkContext.DAGScheduler.TaskScheduler分析,再从总体上了解Spark Job的调度流程 1.SparkContext将job的RDD DAG图提交给DAGScheduler: 2.DAGScheduler将job分解成Stage DAG,将每个Stage的Task封装成TaskSet提交给TaskScheduler:窄依赖以pipeline方式执行,效率高: 3.TaskScheduler将TaskSet中的一个个Task提交到集群中去运行:…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…