CS229 笔记03】的更多相关文章

CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the size of sample. (参数的数目随着样本的数目增加而增加.) Locally Weighted Regression (局部加权线性回归) 损失函数的定义为: $ J_\Theta=\sum_i{w^{(i)}(y^{(i)}-\Theta^{{\rm T}}x^{(i)})^2} $…
<30天自制操作系统>笔记(03)——使用Vmware 进度回顾 在上一篇,实现了用IPL加载OS程序到内存,然后JMP到OS程序这一功能:并且总结出下一步的OS开发结构.但是遇到了真机测试和U盘启动的一些问题.本篇就来解决之. 遇到的问题 物理机测试 简单来说,把软盘(U盘)做成启动盘后,自然想要用来启动物理机器.毕竟这才是真正的测试.(用QEMU总没多大的成就感)但物理机测试的麻烦在于太慢了,每次都要关掉Windows,重启,测试,然后再重启Windows.而且还没办法截图. 而用Vmwa…
JS自学笔记03 1.函数练习: 如果函数所需参数为数组,在声明和定义时按照普通变量名书写参数列表,在编写函数体内容时体现其为一个数组即可,再传参时可以直接将具体的数组传进去 即 var max=getArratMax([1,4,2,6,8,2,5]); 关于说明: /** *函数的说明 *@param array参数为一数组//解释说明参数列表 *returns //解释说明返回值 * * / 当有人需要查看该函数的说明时,使用ctrl+左键点击函数名即可访问以上注释 //输入年月日,获取这个…
机器学习实战(Machine Learning in Action)学习笔记————03.决策树原理.源码解析及测试 关键字:决策树.python.源码解析.测试作者:米仓山下时间:2018-10-24机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/ma…
CS229 笔记08 Kernel 回顾之前的优化问题 原始问题为: \[ \min_{w,b} \frac{1}{2}||w||^2\\[1.5em] {\text{s.t.}}y^{(i)}\left(w^{\rm T}x^{(i)}+b\right)\geq1 \] 原始问题的对偶问题为: \[ \max_{\alpha}\left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j}^m y{(i)} y^{(j)}\alpha_i \alph…
CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{w,b}&=&g(w^{\rm T}x+b)\\[1em] g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em] y&\in&\{-1,1\}\\[1em] \hat\gamma^{(i)}&=&y^{(i)}\left(w…
CS229 笔记06 朴素贝叶斯 事件模型 事件模型与普通的朴素贝叶斯算法不同的是,在事件模型中,假设文本词典一共有 \(k\) 个词,训练集一共有 \(m\) 封邮件,第 \(i\) 封邮件的词的个数为 \(n_i\) ,则 \(x^{(i)} \in \{1,2,\cdots,k\}^{n_i}\) . 此时模型的参数为: \[ \begin{eqnarray*} \phi_{k|y=0}&=&P(x_j=k|y=0)\\[1em] \phi_{k|y=1}&=&P(x…
CS229 笔记05 生成学习方法 判别学习方法的主要思想是假设属于不同target的样本,服从不同的分布. 例如 \(P(x|y=0) \sim {\scr N}(\mu_1,\sigma_1^2)\) , \(P(x|y=1) \sim {\scr N}(\mu_2,\sigma_2^2)\) . Gaussian Discriminant Analysis(高斯判别分析) 在这里还是讨论 \(y\in\{0,1\}\) 的二元分类问题, \(P(y)=\phi^y(1-\phi)^{1-y…
CS229 笔记04 Logistic Regression Newton's Method 根据之前的讨论,在Logistic Regression中的一些符号有: \[ \begin{eqnarray*} P(y=1|x;\Theta)&=&h_\Theta(x)=\frac{1}{1+e^{-\Theta^{{\rm T}}x}} \\[1em] P(y|x;\Theta)&=&[h_\Theta(x)]^y[1-h_\Theta(x)]^{1-y} \\[1em]…
CS229 笔记02 公式推导 $ {\text {For simplicity, Let }} A, B, C \in {\Bbb {R}}^{n \times n}. $ ​ $ {\bf {\text {Fact.1: }}} \text{If } a \in {\Bbb R}, {\rm tr}a=a $ ​ $ {\bf {\text {Fact.2: }}} {\rm{tr}}A={\rm{tr}}A^{\rm T} $ \[ \begin{eqnarray*} {\rm {tr}}…