题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\(k+1\),否则,调整右界到\(k+a_i\). 考虑如何优化,还是扫到了\([1,k]\),假设\(ans=k+1\),如果所有小于等于\(ans\)的数的和\(sum\)起来大于等于\(ans\),则一定可以将\(k\)更新成\(sum\).否则直接输出就好了. 以上这个过程很明显可以用主席树维护,…
大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. 神秘数定义为最小的不能被序列的子集的和表示的正整数. 如序列 \(\{1,1,4,1,13\}\) 的神秘数是 \(8\). 分析: 这题重点在神秘数的求法,先考虑暴力求法,由于定义是序列子集,那么首先考虑将该区间排序,可能会得到一些有用的性质. 假设当前能够表示的区间是 \([1,sum]\),对…
题意:给出1e5个数 查询l,r区间内第一个不能被表示的数 比如1,2,4可以用子集的和表示出[1,7] 所以第一个不能被表示的是8 题解:先考虑暴力的做法 把这个区间内的数字按从小到大排序后 从前往后扫 当前能表示出[1,x] 假设第i个数字y-1<=x 那么就可以表示[1,x+y] 如果y > x + 1那么第一个不能表示出的数字就是x+1 我们根据这个性质来想 假如当前区间能表示出[1,x] 我们计算这个区间内所有比x小的数的和tmp 如果tmp>x 那么我们显然可以表示出[1,t…
传送门 解题思路 如果区间内没有\(1\),那么答案就为\(1\),从这一点继续归纳.如果区间内有\(x\)个\(1\),设区间内\([2,x+1]\)的和为\(sum\),如果\(sum=0\),那么答案为\(x+1\),否则\([1,x+sum]\)中的所有数字一定可以被表示,然后这个操作每次使答案至少扩大\(1\)倍,再用一个主席树维护,时间复杂度\(O(nlognlogA)\) 代码 #include<iostream> #include<cstdio> #include&…
明白之后 5min 就写好了-自闭- 这题的题意是问你 \([L,R]\) 区间的数字不能构成的数字的最小值- 首先考虑 如果 \([1,x]\) 可以被表示 那么加入一个 \(a_i\) 显然 \([1,x+a_i]\) 都可以被表示 有什么好办法呢 当然有 \(O(q * \sum_{i\in[L,R]}{a_i}*[R-L+1])\) (雾) 区间求和问题啥的考虑主席树,首先我不会证明复杂度,是因为我菜/kk 还是一样的套路 讨论 \([1,x]\) 对于区间求 \(\sum_{i\in[…
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数. 咦,神秘数好熟悉啊 最优集合? 那么如何求神秘数就很清楚了,当前$now$,就找$\le now+1$的数 询问区间?难道用主席树嘛 然后看了下题解 发现的确是…
洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真的快要忘了有一种数据结构,能支持单点修改,区间查询,更重要的是,常数优秀的它专门用来高效维护前缀和!!它就是-- !树状数组! 之前静态主席树要保存的每个线段树\([1,i]\),不也是一个庞大的前缀吗?于是,把树状数组套在线段树上,构成支持动态修改的主席树.每个树状数组的节点即为一个线段树的根节点…
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = 4+1+1 7 = 4+1+1+1 8无法表示为集合S的子集的和,故集合S的神秘数为8. 现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数. 输入 第一行一个整数n,表示数字个数. 第二…
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+17 = 4+1+1+18无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数. 输入 第一行一个整数n,表示数字个数.第二行n个整数,从1编…
传送门 简单主席树啊. 但听说有随机算法可以秒掉%%%(本蒟蒻并不会) 直接维护值域内所有数的出现次数之和. 当这个值不大于区间总长度的一半时显然不存在合法的数. 这样在主席树上二分查值就行了. 代码: #include<bits/stdc++.h> #define N 500005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); whi…