StanFord ML 笔记 第三部分】的更多相关文章

第三部分: 1.指数分布族 2.高斯分布--->>>最小二乘法 3.泊松分布--->>>线性回归 4.Softmax回归 指数分布族: 结合Ng的课程,在看这篇博文:http://blog.csdn.net/acdreamers/article/details/44663091 泊松分布: 这里是一个扩展,看不看都可以:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html Softmax回归:…
1.朴素贝叶斯的多项式事件模型: 趁热打铁,直接看图理解模型的意思:具体求解可见下面大神给的例子,我这个是流程图. 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型…
第九部分: 1.高斯混合模型 2.EM算法的认知 1.高斯混合模型 之前博文已经说明:http://www.cnblogs.com/wjy-lulu/p/7009038.html 2.EM算法的认知 2.1理论知识之前已经说明:http://www.cnblogs.com/wjy-lulu/p/7010258.html 2.2公式的推导 2.2.1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian…
第八部分内容:  1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 解释之前,先说明这样做的目的:如果一个模型我们只打算对现有数据用一次就不再用了,那么正则化没必要了,因为我们没打算在将来他还有用,正则化的目的是为了让模型的生命更长久,把它扔到现实的数据海洋中活得好,活得久. 俗气的解释1: 让模型参数不要在优化的方向上纵欲过度.<红楼梦>里,贾瑞喜欢王熙凤得了相…
本章节内容: 1.学习的种类及举例 2.线性回归,拟合一次函数 3.线性回归的方法: A.梯度下降法--->>>批量梯度下降.随机梯度下降 B.局部线性回归 C.用概率证明损失函数(极大似然函数) 监督学习:有实际的输入和输出,给出标准答案做参照.比如:回归的运算,下面有例子. 非监督学习:内有标准答案,靠自己去计算.比如:聚类. 梯度下降法: 注释:以下直接复制Stanford课程的一位同学评论:super萝卜 [网易北京市海淀区网友]. m代表训练样本的数量,number of tr…
第十部分: 1.PCA降维 2.LDA 注释:一直看理论感觉坚持不了,现在进行<机器学习实战>的边写代码边看理论…
第六部分内容: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界(Union bound) 4.一致收敛(Uniform Convergence) 第七部分内容: 1. VC 维 2.模型选择(Model Selection) 2017.11.3注释:这两个部分都是讲述理论过程的,第一方面太难了,第二方面现在只想快速理解Ng的20节课程.所以这部分以后回头再看!  2017.11.4注释:这理论还是得掌握,…
第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Bayes 4.拉普拉斯平滑 Navie Bayes 一.生成学习法generate learning algorithm: 二类分类问题,不管是感知器算法还是逻辑斯蒂回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以成为判别学…
本章内容: 1.逻辑分类与回归 sigmoid函数概率证明---->>>回归 2.感知机的学习策略 3.牛顿法优化 4.Hessian矩阵 牛顿法优化求解: 这个我就不记录了,看到一个非常完美的说明+演示+实际操作:http://www.matongxue.com/madocs/205.html#/madoc Hessian矩阵: 先看其定义: 就是对参数求各个方向的偏导数,我们以以下的2个特征值为例子也就是2X2矩阵,里面的参数是二阶偏导数,那就可以表示图形或者图像的凹凸性或者拐点之类…
# PyQt4入门学习笔记(三) PyQt4内的布局 布局方式是我们控制我们的GUI页面内各个控件的排放位置的.我们可以通过两种基本方式来控制: 1.绝对位置 2.layout类 绝对位置 这种方式要求程序员必须得指定好每个控件的位置和尺寸.当我们使用绝对位置时,我们得明白下面的几条限制: 当我们改变窗口大小时,控件的尺寸和位置不会改变. 我们的应用可能看起来和一般的应用有所不同. 改变前端页面可能会让我们的应用崩溃 如果我们决定要改变我们的布局时,我们必须要把所有控件的位置全部更新 下面这个例…