PCA和Whitening】的更多相关文章

Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 (a)载入数据 利用sampleIMAGESRAW函数,从IMAGES_RAW中提取numPatches个图像块儿,每个图像块儿大小为patchSize,并将提取到的图像块儿按列存放,分别存放在在矩阵patches的每一列中,即patches(:,i)存放的是第i个图像块儿的所有像素值 (b)数据去均…
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%================================================================ %% Step 0a: Load data % Here we provide the code to load natural image data into x. % x will be a * matrix, where…
预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis 白化 whitening 亮度 intensity 平均值 mean 方差 variance 协方差矩阵 covariance matrix 基 basis 幅值 magnitude 平稳性 stationarity 特征向量 eigenvector 特征值 eigenvalue 1.2 介绍 主…
Step 0: Prepare data Step 0a: Load data The starter code contains code to load a set of natural images and sample 12x12 patches from them. The raw patches will look something like this: These patches are stored as column vectors in the matrix x. Step…
接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化了的数值运算来编程,矩阵的操作 尽量少用for循环,用已有的矩阵运算符来操作.这里只是粗略的看了下,有些小技巧还是不错的. PCA: PCA这个以前都接触过了,简单说就是两步: 1.协方差矩阵 其中x(i)是输入样本(假设已经均值化). 2.SVD分解,得出U向量.其中U向量的每列就是样本的新的方向…
PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小.另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待. 在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值.但是比较奇怪的是,在对自然图像进行均值处理时…
PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小.另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待. 在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值.但是比较奇怪的是,在对自然图像进行均值处理时…
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4778067e-01  -3.9074344e-01 ... 可以表示为如下形式: 本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵: 假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/…
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4778067e-01  -3.9074344e-01 ... 可以表示为如下形式: 本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵: 假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/…
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀疏矩阵运算的运算速度. whitening whiten的目的是解除特征向量中各个特征之间的相关性,同时保证保证每个特征的方差一致,是数据集归一化的一种形式.设特征向量 X = (X1,X2,X2),未知的量是随机变量,因此X1 X2 X3 都是随机变量,他们都服从某个分布,有确定的期望.注意到wh…