题意:N座高楼,高度均不同且为1~N中的数,从前向后看能看到F个,从后向前看能看到B个,问有多少种可能的排列数. 0 < N, F, B <= 2000 首先我们知道一个结论:n的环排列的个数与n-1个元素的排列的个数相等,因为P(n,n)/n=(n-1)!. 可以肯定,无论从最左边还是从最右边看,最高的那个楼一定是可以看到的. 假设最高的楼的位置固定,最高楼的编号为n,那么我们为了满足条件,可以在楼n的左边分x-1组,右边分y-1组,且用每 组最高的那个元素代表这一组,那么楼n的左边,从左到…