TensorRT 介绍】的更多相关文章

引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟.高吞吐率的部署推理.TensorRT可用于对超大规模数据中心.嵌入式平台或自动驾驶平台进行推理加速.TensorRT现已能支持TensorFlow.Caffe.Mxnet.Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行…
官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inference optimizer and runtime that delivers low latency, high-throughput inference for deep learning applications. TensorRT can be used to rapidly opti…
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT基础上,基于Yolov3-608网络进行inference,包含预处理和后处理. 首先,从作者网站下载yolov3,然后将其转换成onnx形式,接着基于onnx的graph生成一个tensorrt engine; 然后,在样本图片上进行预处理,并将结果作为engine的输入; 在inference之…
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写plugin.该例子实现一个clip层(以CUDA kernel实现),然后封装成一个tensorrt plugin,然后生成一个动态共享库,用户可以动态的在python中链接该库,将该plugin注册到tensorrt的plugin registry中,并让UFF解析器能够使用. 该例子还是有些知识点…
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展示如何使用基于cpp写的plugin,用tensorrt python 绑定接口和caffe解析器一起工作的过程.该例子使用cuBLAS和cuDNn实现一个全连接层,然后实现成tensorrt plugin,然后用pybind11生成对应python绑定,这些绑定随后被用来注册为caffe解析器的一…
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未dump该权重:接着基于tensorrt的network进行手动设计网络结构并填充权重.本文核心在于介绍network api的使用 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python ├── comm…
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python ├── common.py ├── end_to_end_tensorflow_mnist │   ├── model.py │   ├── README.md │   ├── requirements.txt │  …
本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python/ ├── common.py ├── introductory_parser_samples │   ├── caffe_resnet50.py │   ├── onnx_resnet50.py │   ├── REA…
下面是TensorRT的介绍,也可以参考官方文档,更权威一些:https://developer.nvidia.com/tensorrt 关于TensorRT首先要清楚以下几点: 1. TensorRT是NVIDIA开发的深度学习推理工具,只支持推理,不支持训练:目前TensorRT3已经支持Caffe.Caffe2.TensorFlow.MxNet.Pytorch等主流深度学习库: 2. TensorRT底层针对NVIDIA显卡做了多方面的优化,不仅仅是量化,可以和 CUDA CODEC SD…
NVIDIA TensorRT 让您的人工智能更快! 英伟达TensorRT™是一种高性能深度学习推理优化器和运行时提供低延迟和高通量的深度学习推理的应用程序.使用TensorRT,您可以优化神经网络模型,精确地校准低精度,并最终将模型部署到超大规模的数据中心.嵌入式或汽车产品平台.在对所有主要框架进行培训的模型的推理过程中,基于TensorRT的gpu应用程序的执行速度比CPU快100倍. TensorRT提供INT8和FP16的优化,用于深度学习推理应用程序的生产部署,如视频流.语音识别.推…