长链剖分优化树形DP总结】的更多相关文章

长链剖分 规定若\(x\)为叶结点,则\(len[x]=1\). 否则定义\(preferredchild[x]\)(以下简称\(pc[x]\),称\(pc[x]\)为\(x\)的长儿子)为\(x\)的所有子结点\(ver\)中,\(len[ver]\)最大的一个.\(len[x]=len[pc[x]]+1\). 这里的\(pc[x]\)相当于树链剖分中的\(heavychild[x]\),类似地,我们可以认为整棵树被划分为了若干条互不相交的长链. 有什么用? 求LCA. 到底有什么用? 优化树…
题意:求一颗树上三点距离两两相等的三元组对数 n<=1e5 思路:From https://blog.bill.moe/bzoj4543-hotel/ f[i][j]表示以i为根的子树中距离i为j的点的个数 g[i][j]表示以i为根的子树中两点距离他们的lca为d,lca距离i为d-j的两点对数 g[i][j]找到一个子树外的f[i][j]就对答案有贡献 朴素的方程为:设v为u的一个儿子 ans+=f[u][j]*g[v][j+1]+g[u][j]*f[y][j-1] g[u][j+1]+=f…
点此看题面 大致题意: 设\(d(x,y)\)表示\(x\)子树内到\(x\)距离为\(y\)的点的个数,对于每个\(x\),求满足\(d(x,y)\)最大的最小的\(y\). 暴力\(DP\) 首先让我们来思考如何暴力\(DP\). 这应该还是比较简单的吧. 直接设\(f_{x,i}\)表示在\(x\)的子树内,到\(x\)的距离为\(i\)的点的个数. 则不难推出转移方程: \[f_{x,0}=1,f_{x,i}=\sum f_{son_x,i-1}\] 但这样显然跑不过,要优化. 长链剖分…
原题链接 \(EDU\)出一道长链剖分优化\(dp\)裸题? 简化版题意 问你每个点的子树中与它距离为多少的点的数量最多,如果有多解,最小化距离 思路 方法1. 用\(dsu\ on\ tree\)做到\(O(nlogn)\) 方法2. 考虑\(dp\),也就是设\(f[u][d]\)表示以\(u\)为根的子树中有多少个点与它的距离为\(j\),则转移如下: \(f[u][0]=1\),\(f[u][d]+=f[v][d-1]\) 发现可以直接通过把数组右移直接把一个儿子的信息继承过来,又因为转…
传送门 长链剖分优化dpdpdp水题. 题意简述:给一棵树,mmm次询问,每次给一个点aaa和一个值kkk,询问满足如下条件的三元组(a,b,c)(a,b,c)(a,b,c)的个数. a,b是c的祖先 a,b的距离不超过k 思路: 考虑单独处理每一个询问怎么做. 显然a,ba,ba,b的位置关系有两种. bbb是aaa的祖先,此时ccc一定在aaa子树中,这种情况的三元组个数是(sizea−1)∗min(k,depa−1)(size_a-1)*min(k,dep_a-1)(sizea​−1)∗m…
首先,重链剖分我们有所认识,在dsu on tree和数据结构维护链时我们都用过他的性质. 在这里,我们要介绍一种新的剖分方式,我们求出这个点到子树中的最长链长,这个链长最终从哪个儿子更新而来,那个儿子就是所谓的“重儿子”,也可以叫长儿子. 我们的做法就是,在统计一个点的信息时,对于重儿子,我们直O(1)接继承它的答案(这里有指针技巧,只能看代码,不可言传),对于轻儿子我们暴力统计. 复杂度分析:一个点被计算,最多只会在作为重链上的点时被继承一次,在重链顶端时被暴力统计一次.所以最终复杂度是O(…
传送门 考虑直接推式子不用优化怎么做. 显然每一个二进制位分开计算贡献就行. 即记录fi,jf_{i,j}fi,j​表示距离iii这个点不超过jjj的点的每个二进制位的0/10/10/1个数. 但直接存是会爆炸的. 考虑到每个数只会被用一次,所以可以考虑主席树那种复用信息的思想来继承长链后代的信息,然后短链直接暴力统计贡献就行. 由于ldxldxldx蒟蒻是口胡选手只会暴力写法,因此正解差不多是照着标程写的233. 细节较多,用指针维护比较自然一些. 代码…
http://cogs.pro:8080/cogs/problem/problem.php?pid=vSXNiVegV 题意:给个树,第i个点有两个权值ai和bi,现在求一条长度为m的路径,使得Σai/Σbi最小. 思路:二分答案得p,把每个点权值变成ai-p*bi,看是否存在长为一条长为m的路使总和<=0. tag数组表示从当前位置沿最长链走到底的值,dp数组初值表示从当前位置的重儿子走到底的值(加负号),用tag[...]+dp[..]维护从当前节点往下走若干步得到的最小值(只更新dp数组…
BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 5 Sample Output 5 #include<bits/stdc++.h> using namespace std; #define LL long long #define N 100010 LL pool[N<<4]; LL* top=pool; LL* get(int…
传送门 官方题解其实讲的挺清楚了,就是锅有点多-- 一些有启发性的部分分 L=N 一个经典(反正我是不会)的容斥:最后的答案=对于每个点能够以它作为集合点的方案数-对于每条边能够以其两个端点作为集合点的方案数.原因是:对于每一种合法方案,集合点一定是树上的一个连通块,满足\(n=m+1\).算点时,这种方案被算了\(n\)次:算边时,这种方案被算了\(m=n-1\)次,所以每一个方案都恰好被算了一次. 有\(DP\):设\(f_i-1\)表示选择了包含\(i\)和\(i\)的子树中的点的一个连通…
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方案数. 设f[i][j]表示i节点子树中与i距离为j的点的个数. g[i][j]表示i节点子树中有g[i][j]对点满足每对点距离他们lca的距离都是d,他们lca距离i节点为d-j 也就是说现在已经找到两个节点了,需要再在没遍历的i的子树中找到一个距离i为j的点. 那么很容易得到转移方程: ans+=f…
传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j​表示iii子树中离iii距离为jjj的点数,gi,jg_{i,j}gi,j​表示iii子树中所有满足dist(lca(u,v),i)−dist(lca(u,v),i)=jdist(lca(u,v),i)-dist(lca(u,v),i)=jdist(lca(u,v),i)−dist(lca(u,v),i)=j的点对数…
[CF860E]Arkady and a Nobody-men 题意:给你一棵n个点的有根树.如果b是a的祖先,定义$r(a,b)$为b的子树中深度小于等于a的深度的点的个数(包括a).定义$z(a)=\sum\limits r(a,b)$(b是a的祖先).要你求出每个点的z值. $n\le 5\times 10^5$ 题解:一开始naive的思路:将所有点按深度排序,将深度相同的点统一处理,统计答案时相当于链加,链求和,用树剖+树状数组搞一搞,时间复杂度$O(n\log^2n)$. 后来看题解…
题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\(g[i][j]\)对点深度相同,他们到LCA的距离为\(d\),且他们的LCA到\(i\)的距离为\(d-j\).或者换句话来说就是以\(i\)为根的子树中有这么多个点对,而且没有第三个点去和这些点对匹配,第三个点不在\(i\)的子树中且到\(i\)的距离为\(j\),\(g[i][j]\)表示这…
[BZOJ4543]Hotel加强版(长链剖分) 题面 BZOJ,没有题面 洛谷,只是普通版本 题解 原来我们的\(O(n^2)\)做法是设\(f[i][j]\)表示以\(i\)为根的子树中,距离\(i\)的深度为\(j\)的点的个数,这样子可以每次在\(LCA\)处合并答案. 然后长链剖分优化一下,就变成了\(O(n)\)的??? 写的详细写的题解 玄学的指针我也没太懂啊....我才不会说我代码是照着题解打的 upd:之前的代码蒯错了,我去BZOJ把过了的代码再蒯一遍 #include<ios…
传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck. 发现就是求在转化成真·边权之后有没有长度在[L,R][L,R][L,R]之间的路径权值是大于0的. 然后可以设计状态fi,jf_{i,j}fi,j​表示iii开头长度为jjj的路径最大值,这个可以用长链剖分优化转移. 然后考虑怎么把经过iii的两条路径拼起来更新答案,这个可以用线段树优化转移,然…
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 输出 输出最大平均估值,保留三位小数 样例输入 4 2 3 1 2 1 1 3 2 1 4 3 样例输出 2.500 提示 N<=100000,1<=L<=U<=N-1,Vi<=1000000 这题算…
题目大意 ​ 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) ​ \(1\leq n\leq 100000\) 题解 ​ 问题转换为有多少个组点满足\(dist_{i,x}=dist_{i,y}=dist_{i,z}\) ​ 我们考虑树形DP ​ \(f_{i,j}=\)以\(i\)为根的子树中与\(i\)的距离为\(j\)的节点数 ​ \(g_{i,j}=\)以\(i\)为根的子树外选择一个…
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\(g[x][i]\)表示\(x\)子树中,满足\(u,v\)到\(LCA(u,v)\)的距离都是\(d\),且到\(x\)的距离为\(d-i\)的点对\((u,v)\)个数.(就是不以\(x\)作为三个点的中心位置,那样就没法算了) 如图 那么就可以由\(g[x][i]\)与另一棵子树的\(f[y][…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. 我一开始是另一种做法,所以别人说这个题目可以有长链剖分来加速的时候怎么也想不出来. 枚举 \(i\),令点 \(i\) 为根,统计三个人的中心是 \(i\) 的情况.首先三个人一定在不同的子树中,然后分层统计一下就好了. 还有一个种纯 dp 的做法: 令 \(dp[x][i]\) 表示 \(x\)…
题目链接 \(O(n^2)\)的\(DP\)很容易想,\(f[u][i]\)表示在\(u\)的子树中距离\(u\)为\(i\)的点的个数,则\(f[u][i]=\sum f[v][i-1]\) 长链剖分. \(O(1)\)继承重儿子的信息,再暴力合并其他轻儿子的信息,时间复杂度是线性的. 继承重儿子用指针实现,非常巧妙. #include <cstdio> int xjc; char ch; inline int read(){ xjc = 0; ch = getchar(); while(c…
dsu on tree 对于树进行轻重链剖分,对于节点 $x$ ,递归所有轻儿子后消除其影响,递归重儿子,不消除其影响. 然后对于所有轻儿子的子树暴力,从而得到 $x$ 的答案. 对于要消除暴力消除即可. 可以发现如果暴力到点 $u$ 必然是其 $u$ 到根的轻边数量,从而时间复杂度除在统计每个节点答案时其余时间复杂度为 $O(n\log n)$ . CF 600E Lomsat gelral 模板题,按上述过程模拟即可. #include<iostream> #include<cstd…
题意 给你一颗有 \(n\) 个点并且以 \(1\) 为根的树.共有 \(q\) 次询问,每次询问两个参数 \(p, k\) .询问有多少对点 \((p, a, b)\) 满足 \(p,a,b\) 为三个不同的点,\(p, a\) 都为 \(b\) 的祖先,且 \(p\) 到 \(a\) 的距离不能超过 \(k\) . \(n\le 300000 , q\le 300000\) 不要求强制在线. 题解 令 \(dep[u]\) 为点 \(u\) 的深度,\(sz[u]\) 为 \(u\) 的子树…
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round7-I.html 题目传送门 -  https://www.nowcoder.com/acm/contest/145/I 题意 给定一棵有 $n$ 个节点的树,问有多少个点集的直径恰好等于 $D$ . 一个点集的直径定义为该点集中距离最远的两个点的距离. 两个点的距离定义为他们在树上的最短路径经过的边数. $n\leq 10^5$ 题解 我的做法有点难写,官方…
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深度在\([L-d,R-d]\)内的最大值更新.这可以用单调队列维护. 这需要子树中的点按dep排好序.可以用BFS,省掉sort. 直接这样的话,每次用之前的子树更新当前子树时,每次复杂度是\(O(\max\{dep\})\)的(之前子树中最大的深度).能被卡成\(O(n^2\log n)\). 可…
[FJOI2014]最短路径树问题 LG传送门 B站传送门 长链剖分练手好题. 如果你还不会长链剖分的基本操作,可以看看我的总结. 这题本来出的很没水平,就是dijkstra(反正我是不用SPFA)的板子强行套个点分治的板子,两者之间没有任何关联.但我偏要写长链剖分. 首先给你的是一张图,要转成一棵题目所要求的树,先把出边按到达点的编号排个序再跑个单源最短路,然后一遍dfs把树建出来就好了.这不是本文的重点(如果用点分治也要这样写),如果没搞懂看看代码就好了. 建出一棵树之后,把某个点连向其父亲…
长链剖分学习笔记 说到树的链剖,大多数人都会首先想到重链剖分.的确,目前重链剖分在OI中有更加多样化的应用,但它大多时候是替代不了长链剖分的. 重链剖分是把size最大的儿子当成重儿子,顾名思义长链剖分就是把 len (到叶子节点的距离) 最长的儿子当成重儿子. 由于是和深度有关的算法,长链剖分常用于优化一些和深度有关的dp或其他算法. 具体按照蒟蒻的理解来说,就是类似启发式合并的那种感觉,每个点为根的子树都可以看成一条最长的链上支出了一些叉,而我们想把这棵子树捋成只有一条链,毕竟链多清晰明了,…
题目大意: 就是给你一棵以1为根的树,询问每一个节点的子树内节点数最多的深度(相对于这个子树根而言)若有多解,输出最小的. 解题思路: 这道题用树链剖分,两种思路: 1.树上DSU 首先想一下最暴力的算法:统计子树每个深度节点的个数(桶)相当于以每个节点为根遍历子树搜索一遍答案,这样做时间复杂度是O(n2),显然过不去. 考虑一下优化.假如说我们模拟一下搜索答案的过程,我们发现在每一次暴搜时都会在桶中添加一些答案.而这些答案的整体只会对该节点及其祖先产生贡献,也就是说,只有该节点以及其祖先的桶中…
传送门 强行二合一最为致命 第一问直接最短路+$DFS$解决 考虑第二问,与深度相关,可以考虑长链剖分. 设$f_{i,j}$表示长度为$i$,经过边数为$j$时的最大边权和,考虑到每一次从重儿子转移过来的时候,不仅要将$f$数组右移一格,还需要同时加上一个值.显然用线段树等数据结构额外维护是不现实的,我们考虑维护一个影响范围为整个$f_i$的加法标记$tag_i$,将$f_{i,0}$设置为$-tag_i$,每一次上传的时候把标记也一起上传,合并轻儿子.计算答案的时候将这个$tag$加上,就能…
上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点的个数$g[x][j]$表示以$x$为根的子树内的点对$(a,b)$距他们的$lca$的距离为$d$,$x$距$lca$的距离为$d-j$的点对数 那么转移很明了 对于 $x,y$ 其中$fa[y]=x$ 有 $f[x][i]+=f[y][i-1]$ $g[x][i-1]+=g[y][i]$ $g[…