kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类别数为样本数时,一个样本一个类,聚合程度最高: 3. 当k小于真实类别数时,随着k的增大,聚合程度显著提高,当k大于真实类别数时,随着k的增大,聚合程度缓慢提升: 4. 大幅提升与缓慢提升的临界是个肘点: 5. 评价聚合程度的数学指标类似 mse,均方差,是每个类别的样本与该类中心的距离平方和比上样…