kmeans 聚类 k 值优化】的更多相关文章

kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类别数为样本数时,一个样本一个类,聚合程度最高: 3. 当k小于真实类别数时,随着k的增大,聚合程度显著提高,当k大于真实类别数时,随着k的增大,聚合程度缓慢提升: 4. 大幅提升与缓慢提升的临界是个肘点: 5. 评价聚合程度的数学指标类似 mse,均方差,是每个类别的样本与该类中心的距离平方和比上样…
本文主要基于Anand Rajaraman和Jeffrey David Ullman合著,王斌翻译的<大数据-互联网大规模数据挖掘与分布式处理>一书. KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数. KMeans算法本…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入.我的博客写一些自己用得到东西,并分享给大家,如果有问题欢迎留言与我讨论:) Kmeans聚类方法是(我认为)最广泛使用以及稳定.有效的聚类方法.聚类是无监督学习方法,不需要对数据本身的标签有任何了解.如果你不是很理解kmeans算法本身,建议随便找一本数据挖掘/机器学习的书来看一看,或者看下baidu[1]的内容基本就能理解. Kmea…
Calinski-Harabasz准则有时称为方差比准则 (VRC),它可以用来确定聚类的最佳K值.Calinski Harabasz 指数定义为: 其中,K是聚类数,N是样本数,SSB是组与组之间的平方和误差,SSw是组内平方和误差.因此,如果SSw越小.SSB越大,那么聚类效果就会越好,即Calinsky criterion值越大,聚类效果越好. 1.下载permute.lattice.vegan包 install.packages(c("permute","lattic…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
前言 kmeans是最简单的聚类算法之一,但是运用十分广泛.最近在工作中也经常遇到这个算法.kmeans一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点. 本文记录学习kmeans算法相关的内容,包括算法原理,收敛性,效果评估聚,最后带上R语言的例子,作为备忘.   算法原理 kmeans的计算方法如下: 1 随机选取k个中心点 2 遍历所有数据,将每个数据划分到最近的中心点中 3 计算每个聚类的平均值,并作为新的中心点 4 重复2-3,直到这k个中线点不再变…
SparkMLlib聚类学习之KMeans聚类 (一),KMeans聚类 k均值算法的计算过程非常直观: 1.从D中随机取k个元素,作为k个簇的各自的中心. 2.分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇. 3.根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数. 4.将D中全部元素按照新的中心重新聚类. 5.重复第4步,直到聚类结果不再变化. 6.将结果输出. (二),Spark下KMeans的应用 1,数据集下载:数据来源电影…
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结构信息,对数据进行分簇(分类).聚类算法的目标是,簇内相似度高,簇间相似度低 二.基本的聚类分析算法 1. K均值(K-Means): 基于原型的.划分的距离技术,它试图发现用户指定个数(K)的簇. 2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝…
0 K-means算法简介 K-means是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一. K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 算法过程如下:   1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2-3步直至新的质心与原质心相等或小于指定阈值,算法结束     参考…
第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值 是因为它可以发现 K 个不同的簇, 且每个簇的中心采用簇中所含值的均值计算而成.簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述.聚类与分类算法的最大区别在于, 分类的目标类别…