sklearn pca降维】的更多相关文章

PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
参考资料:Mastering Machine Learning With scikit-learn 降维致力于解决三类问题.第一,降维可以缓解维度灾难问题.第二,降维可以在压缩数据的同时让信息损失最 小化.第三,理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解 PCA简介 主成分分析也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可…
PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标是将数据投影到维度为K的子空间中,要求K<D且最大化投影数据的方差.这里的K值既可以指定,也可以利用主成分的信息来确定. PCA其实就是方差与协方差的运用. 降维的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,…
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,decomposition def load_data(): ''' 加载用于降维的数据 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.load_iris() return iris.data,iris.target #PCA降维 def…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解)实现,查阅多个文章很容易更糊涂,所以搞懂之后写下这个总结. 先说最关键的点: a. PCA两个主要的实现方式: SVD(奇异值分解), EVD(特征值分解). b. 特征值分解方式需要计算协方差矩阵,分解的是协方差矩阵.  SVD方式不需要计算协方差矩阵,分解的是经过中心化的原数据矩阵 1.特征值分…
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n_components参数设置需要保留特征的数量,如果是小数,则表示保留特征的比例; 设为大于零的整数,会自动的选取n个主成分- whiten: 默认为False,若为True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致 PCA降维识别手写数字 导包 import numpy as np imp…
PCA可以将数据从原来的向量空间映射到新的空间中.由于每次选择的都是方差最大的方向,所以往往经过前几个维度的划分后,之后的数据排列都非常紧密了, 我们可以舍弃这些维度从而实现降维 原理 内积 两个向量的乘积满足:\(ab= |a|\cdot |b|\cdot cos(\theta)\).如果\(|b|=1\)的话,\(ab=|a| \cdot cos(\theta)\). 而这个式子的含义就是a在b方向上的投影长度.pca用投影的长度的方差来衡量一个向量基的好坏. 基变换的矩阵表示 如果我想要把…