SPOJ VLATTICE(莫比乌斯反演)】的更多相关文章

Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. Inpu…
传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <string> #include <cmat…
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=…
传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : F(n) 为GCD(a,b,c) = d 的倍数的种类数, n%a == 0 n%b==0 n%c==0. 即 :F(d) = (N/d)*(N/d)*(N/d); 则f(d) = sigma( mu[n/d]*F(n), d|n ) 由于d = 1 所以f(1) = sigma( mu[n]*F(n) )…
题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为gcd(a, b, c) = x的对数,那么这题就是要求g(1).我们令f(x)为x | gcd(a, b, c)的对数,显然f(n) = sigma(n | d, g(d)) .f(d) = (n/d) * (n/d) * (n/d),那么我们就可以用莫比乌斯反演公式了, g(n) = sigma(n |…
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x,y,z)==1的个数+{(x,y,0)|gcd(x,y)==1}的个数+3{(0,0,1),(0,1,0),(1,0,0)} 现在不去管最后的三个坐标轴上的点, 设f(i)=|{(x,y,0)|gcd(x,y)==i}|*3+|{(x,y,z)|gcd(x,y,z)==i}|,也就是不在坐标轴上且…
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segmen…
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lat…
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 F[n]为所有满足三个数的最大公约数能被n整除的三元组数量 显然 F[n]=∑n|df[d] 然后由莫比乌斯反演,f[n]=∑n|dμ[d/n]*F[d] 情况三也是一样的 #include<iostream> #include<algorithm> #include<set&g…
题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n[gcd(i,j,k)==1])+(\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==1])\\+(\sum_{i=1}^n\sum_{k=1}^n[gcd(i,k)==1])+(\sum_{j=1}^n\sum_{k=1}^n[gcd(j,k)==1]) \]…
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible…
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lat…
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n. Input The first line contains T the number of test cases. Each of the n…
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has cre…
BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\)增加v.第2种为2 x,查询\(\sum_{i=1}^x a_i\). 数据范围:\(1\le n,d,v\le2\cdot 10^5,1\le x\le l\) 题解 设\(f_i\)满足\(a_i=\sum_{d|i} f_d\),用树状数组存储\(f_i\)的前缀和. \[a_x+=v\cd…
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌斯反演函数: void Init() { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0;…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的莫比乌斯反演式子并没有除法- 本脑子有坑选手的做法:20101009是一个质数,而且n和m的范围小于20101009,这一定有其原因.经过仔细思考,我们发现这保证了每个1~n的数都有mod20101009意义下的乘法逆元.用inv[x]表示x的逆元,我们发现原先的式子等于sigma{inv[gcd(i,j)]…
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i){ if (notp[i]==0){ p[++pcnt]=i; mu[i]=-1; } for (int j=1,t=p[j]*i;j<=pcnt&&t<=n;++j,t=p[j]*i){ notp[t]=1; if (i%p[j]==0){ mu[i]=0; break; }e…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include <cmath> #include <cstdio> using namespace std; #define LL long long #define MMX 50010 int mu[MMX],msum[MMX]; LL n; bool check[MMX]; int prime[MM…
Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 300    Accepted Submission(s): 124 Problem Description WLD likes playing with codes.One day he is writing a function.Howerver,his computer b…
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个倍数. 第一行两个数:p和q.(1<p<10^7 ,1<q<1000.) 接下来有q行,每行两个数A和B.(1<A,B<10^7) 我们先考虑第二个问题 ,很简单答案就是 (A/p) * (B/p) , 因为从p开…
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的(x,y)的对数,显然F(x)=[nx]∗[mx]. 设f(x)为gcd(x,y)=x的对数. 因为F(x)=∑i|xf(i),所以我们可以莫比乌斯反演它. 根据公式f(x)=∑x|dμ(d)F(d) 我们的目标就是f(1)(因为n和m都可以除以k) 所以我们就可以在O(n)的时间复杂度内求出答案了. #in…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4291    Accepted Submission(s): 1502 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 718 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,…
4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discuss] Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. Output 如题 Sample Input 1 23 3 Sample Outpu…
莫比乌斯反演:可参考论文:<POI XIV Stage.1 <Queries>解题报告By Kwc-Oliver> 求莫比乌斯函数mu[i]:(kuangbin模板) http://www.cnblogs.com/kuangbin/archive/2013/08/21/3273440.html void Moblus() { memset(check,false,sizeof(check)); mu[] = ; ; ; i <= MMX; i++) { if( !check[…
GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)     …