不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; inline ll read(){ ,f=; ;c=getchar();} +c-';c=getchar();} re…
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 11970   Accepted: 3788 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express no…
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/article/details/52186204 这个博客提供了互质情况下的代码以及由此递推出的(另一个版本的)非互质情况下的代码. 假如给出m[n],a[n]分别代表要求的除数和余数: 互质情况下: ( 做n次 ) 对不包含m[i]的所有m求积 ( 互质的数的最小公倍数 ) , exgcd求出来逆元后…
一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-programmer.com/posts/19363.html 这个博客举例说的挺好的:http://blog.csdn.net/mishifangxiangdefeng/article/details/7109217 hdu 3579 Hello Kiki 中国剩余定理(不互质的情况) 对互质的情况…
题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cmath> using namespace std; #define LL __int64 LL p[],o[]; LL x,y; LL ext_eulid(LL a,LL b) { LL t,d; ) { x = ; y = ; return a; } d = ext_eulid(b,a%b); t =…
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中r1,r2,--,rk互质 这种问题都有多解,每一个解都为最小的解加上若干个lcm(r1,r2,...,rk),这个不用我证了吧(-_-||) 解决这个问题的方法是构造法, 先构造k个数 满足, 这样就保证 ,但是由于 bi 乘了除 ri 以外所有 r,所以bi模其它的 r 都为 0, 再把所有 b…
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:Choose k different positive integers a1, a2, …, ak. For some n…
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 21651 Accepted: 7266 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative inte…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * m_2\) \(x_1 * m_1 + x_2 * m_2 = a _ 2 - a _ 1\)(因为正负号没影响嘛) 然后就可以exgcd解出来\(x_1, x_2\), 最后就可以得到\(x' = a_1 + x_1 * m_1, m' = lcm(m_1, m_2)\) 然后就不停合并就可以了…