使用pooling的目的之一是获取一定的特征不变性,目前用的比较多的是Max..,非线性对于Deep的重要性不用多说,pooling是主要贡献之一,当然少不了relu类的激活函数.pooling还有一个重要的作用是为了保持某种不变性. pooling有优势必有劣势,邻域大小受限造成的顾及只方差增大,卷积层参数误差造成估计均值的偏移.一般ave能减小第一种,而max能减小第二种. Learning Mid-Level Features For Recogniiton对前两者有详尽对比.…
官方教程中没有解释pooling层各参数的意义,找了很久终于找到,在tensorflow/python/ops/gen_nn_ops.py中有写: def _max_pool(input, ksize, strides, padding, name=None): r"""Performs max pooling on the input. Args: input: A `Tensor` of type `float32`. 4-D input to pool over. ks…
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 转自:http://blog.csdn.net/xzzppp/article/details/51377731 另可参考:http://zhangliliang.com/2014/09/13/paper-note-sppnet/ http:/…
卷积的实现: 对于每幅图像,每个filter,首先从W中取出对应的filter: filter = squeeze(W(:,:,filterNum)); 接下来startercode里面将filter旋转90度并且取出image: % Flip the feature matrix because of the definition of convolution, as explained later filter = rot90(squeeze(filter),2); % Obtain the…