Pandas 1 表格数据类型DataFrame】的更多相关文章

# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/12 10:07 import numpy as np import pandas as pd dates = pd.date_range(", periods=5) ''' DatetimeIndex(…
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 DataFrame 常用于表达二维数据,但可以表达多维数据 DataFrame创建 从字典创建 >>> import pandas as pd >>> frame=pd.DataFrame(data) >>> data={'name':['a','b','…
pandas库的数据类型运算 算数运算法则 根据行列索引,补齐运算(不同索引不运算,行列索引相同才运算),默认产生浮点数 补齐时默认填充NaN空值 二维和一维,一维和0维之间采用广播运算(低维元素与每一个高维元素运算) 采用 +-*/符号的二元运算会产生新的对象 a = pd.DataFrame(np.arange(12).reshape(3,4)) a b = pd.DataFrame(np.arange(20).reshape(4,5)) b # 维度相同,行列内元素个数不同的运算,自动补齐…
数据类型-DataFrame DataFrame是由多个Series数据列组成的表格数据类型,每行Series值都增加了一个共用的索引 既有行索引,又有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 DataFrame数据类型可视为:二维 带标签 数组 每列值的类型可以不同 基本操作类似Series,依据行列索引操作 常用于表达二维数据,但也可以表达多维数据(Dataframe嵌套,极少用) DataFr…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
pandas向表格中循环写入多行数据 import pandas as pd def list_topic(total_num, str1): """ 生成多个主题 :param total_num: 总的主题数量 :param str1: 主题名称中的固定字母,如A1,A2,A3,A4.... :return: 返回主题列表 """ list_topic = [] num = 1 for j in range(total_num): topic…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
url = http://www.hnu.edu.cn/xyxk/xkzy/zylb.htm 部分表格如图: 部分html代码: <table class="MsoNormalTable" style="width:353.0pt;margin-left:4.65pt;border-collapse:collapse;border:none; mso-border-alt:solid windowtext .5pt;mso-padding-alt:0cm 5.4pt 0…
DataFrame中存在重复的行或者几行中某几列的值重复,这时候需要去掉重复行,示例如下: data.drop_duplicates(subset=['A','B'],keep='first',inplace=True) 代码中subset对应的值是列名,表示只考虑这两列,将这两列对应值相同的行进行去重.默认值为subset=None表示考虑所有列. keep='first'表示保留第一次出现的重复行,是默认值.keep另外两个取值为"last"和False,分别表示保留最后一次出现的…