迁移学习 transferlearning】的更多相关文章

2019-04-08 13:25:17 在实践中,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大小的数据集是相对罕见的.相反,通常在非常大的数据集(例如ImageNet,其包含具有1000个类别的120万个图像)上预先训练ConvNet,然后使用预训练好的ConvNet作为感兴趣的任务的参数初始化或固定特征提取器.目前主要有种种Transfer Learning方案如下: 将ConvNet作为固定的特征提取器 在ImageNet上预先训练一个ConvNet,删除最后一个完全连接的…
迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个…
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型,所以这个时候迁移学习就派上用场了. 什么是迁移学习? 迁移学习通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三.由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识.比如,已经会下中国象棋,就可以类比着来…
最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不错,可以直接用. 但发现vgg16是训练好的模型,拿来直接用太没水平,于是网上发现说可以用vgg16进行迁移学习. 我理解的迁移学习: 迁移学习符合人们学习的过程,如果要学习一样新东西,我们肯定会运用或是借鉴之前的学习经验,这样能够快速的把握要点,能够快速的学习.迁移学习也是如此. vgg16模型是…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 [v2] Batch Normalization: Accelerating Deep Network Training by Re…
VGG16迁移学习实现 本文讨论迁移学习,它是一个非常强大的深度学习技术,在不同领域有很多应用.动机很简单,可以打个比方来解释.假设想学习一种新的语言,比如西班牙语,那么从已经掌握的另一种语言(比如英语)学起,可能是有用的. 按照这种思路,计算机视觉研究人员通常使用预训练 CNN 来生成新任务的表示,其中数据集可能不够大,无法从头开始训练整个 CNN.另一个常见的策略是采用在 ImageNet 上预训练好的网络,然后通过微调整个网络来适应新任务. 这里提出的例子受启于 Francois Chol…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…