OpenCV中的KNN】的更多相关文章

一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 import numpy as np import matplotlib.pyplot as plt # 包含25个已知/训练数据的(x,y)值的特征集 trainData = np.random.randint(, , (, )).astype(np.float32) # 用数字0和1分别标记红色和蓝色…
部分 VIII机器学习 OpenCV-Python 中文教程(搬运)目录 46 K 近邻(k-Nearest Neighbour ) 46.1 理解 K 近邻目标 • 本节我们要理解 k 近邻(kNN)的基本概念.原理 kNN 可以说是最简单的监督学习分类器了.想法也很简单,就是找出测试数据在特征空间中的最近邻居.我们将使用下面的图片介绍它. 上图中的对象可以分成两组,蓝色方块和红色三角.每一组也可以称为一个 类.我们可以把所有的这些对象看成是一个城镇中房子,而所有的房子分别属于蓝色和红色家族,…
背景分割器BackgroundSubtractor是专门用来视频分析的,会对视频中的每一帧进行"学习",比较,计算阴影,排除检测图像的阴影区域,按照时间推移的方法提高运动分析的结果.而且BackgroundSubtractor不仅可以用于背景分割,而且还可以提高背景检测的效果.在opencv中有三种分割器:KNN,MOG2,GMG. 通过mog2实现 import numpy as np import cv2 cap=cv2.VideoCapture(1) mog = cv2.crea…
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理. Mat类型可用于直接存储图像信息,通过函数imread.imwrite.imshow等实现(与Matlab中的函数相…
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好坏也直接影响着其他相关函数的性能,最典型莫如现在很好的EPF滤波器:GuideFilter.因此其优化的档次和程度是非常重要的,网络上有很多相关的代码和博客对该算法进行讲解和优化,提出了不少O(1)算法,但所谓的0(1)算法也有优劣之分,0(1)只是表示执行时间和某个参数无关,但本身的耗时还是有区别…
最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matching代码仿真.Andreas提供的源码中没有使用opencv,导致我一时无法适应如何显示处理的中间结果.将对应的库加载后,仿照采集相机图像数据的方式,从内存中读取对应图像到IplImage类型指针指定的内存空间,方便代码的调试和效果观测.其中用到的部分资料如下. *******************…
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_eWeRu9p9GhZd49WJ1bEOB7VluQdBdRKeehAO2Q3B7RatTXDruq-M9cR-W2yqATerDlIU1T3whYoyQfi http://www.cvchina.info/2011/07/04/whats-orb/ http://www.bubuko.com/in…
/* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include"cv.h" using namespace cv;//InputArray 等的定义在cv里面 namespace ourGaussmix { class BackgroundSubtractor: public cv::Algorithm { public: virtual ~Backgr…
opencv中的.at方法是用来获取图像像素值得函数: interpolation:差值 histogram:直方图…
CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核函数,GPU运行程序:5.传输结果到CPU:6.继续主机代码执行. 下图是两个向量相加的简单示例程序和处理流图. 注意的问题:cu,cpp文件的组织 内核函数和其wrapper函数置于cu文件中. 在cpp文件声明wrapper函数,并调用wrapper函数. wrapper函数的声明定义需加ext…