python数据分析笔记中panda(1)】的更多相关文章

1 例子1 from pandas import read_csv; df = read_csv('H://pythonCode//4.1//1.csv') df 截图 1.1 修改表的内容编码 df = read_csv('D://PA//4.1//1.csv', encoding='UTF-8') 2 去掉重复行 (1)读取一个csv from pandas import read_csv; df = read_csv('H:\\python数据分析基础与实践 VIP教程\\章节4数据处理\…
1 按照空格将一列的内容分为两列 from pandas import Series; from pandas import DataFrame; from pandas import read_csv; #字段的拆分:按照固定的字符 拆分已有的字符串 #函数:splite(sep,n.expand=false) #参数的意思 # ()用于分割的字符串 #()分割为多少咧 #()是否展开为数据框 默认为false df = read_csv("H:\\pythonCode\\4.7\\data.…
1 将手机号码分开为运营商,地区和号码段 from pandas import read_csv; df = read_csv("H:\\pythonCode\\4.6\\data.csv"); #转换成字符数据 方便用slice df['tel'] = df['tel'].astype(str); #字符的抽取:根据已知列数据的开始和结束的位置 抽取新的列 slice(start,stop) #运营商 bands = df[, ); #地区 areas = df[, ); #号码段…
[ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&idx=4&sn=bf74cbf3cd26f434b73a581b6b96d9ac&chksm=bdbd1b388aca922ee87842d4444e8b6364de4f5e173cb805195a54f9ee073c6f5cb17724c363&mpshare=1&scene=…
最近在看Python数据分析这本书,随手记录一下读书笔记. 工作环境 本书中推荐了edm和ipython作为数据分析的环境,我还是刚开始使用这种集成的环境,觉得交互方面,比传统的命令行方式提高了不少. 使用方法 #edm shell (edm)bash-3.2$ ipython Python 2.7.13 |Enthought, Inc. (x86_64)| (default, Mar 2 2017, 08:20:50) Type "copyright", "credits&…
速查笔记 使用实例 Pandas-数据导入 (未完成) Pandas-数据探索 基础属性 shape indexs columns values dtype/dtypes 汇总和计算描述统计 count() value_count() describe() head() tail() Pandas-数据整理 丢弃值 drop() 缺失值处理 isnull() & notnull() dropna() fillna() 值替换 replace() get_dummies() 重复值处理 dupli…
Pandas操作 python使用pandas读取csv import pandas as pd #数据筛选 usetTable = pd.read_csv(filename,header = 0) mask = True ^ userTable['ID'].isin(['',''])&..... show = userTable[mask] #例子,包含6105的行 userTable[userTable['])] userTable[userTable['ID'].isin([6105])]…
pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值)• isnull方法 • 查看行:df.isnull().any(axis=1)  • 查看列:df.isnull().any(axis=0)• notnull方法:• 查看行:df.notnull().all(axis=1)• 查看列:df.notnull().all(axis=0…
文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!QQ群:101677771 一.Pandas的使用 1.Pandas介绍 2.Pandas基本操作 Series的操作 创建DataFrame 常见列操作 常见行操作 DateFrame的基本操作 时间操作 3.Pandas进行数据…
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.…
前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环境的搭建过程,以及Hello World的实现. 第二篇 VS2013中Python学习笔记[基础入门] 我简单学习使用了Python的几个基础的知识点. 第一个Web页面 第一步:首先打开VS2013开发工具 ,新建项目,选择Django Project模版. 修改项目名称,可以查看到项目的文件结…
大致扫了一遍,具体的代码基本都没看了,毕竟我还不懂python,并且在手机端的排版,这些代码没法看. 有收获,至少了解到以下几点: 一. Python的语法挺有意思的     有一些类似于JavaScript这种动态语言的特性在里面,比如多值赋值.比如Lambda表达式等,有机会可以找本python的入门书籍来看看,下面是2017年6月的最新语言排行版,可以看到,传统语言一直在衰退比如c.c#.Java.c++.php.perl等,而一些适应互联网发展的新兴语言一直在增长,比如Python.Ja…
Pandas pandas是一个流行的开源Python项目,其名称取panel data(面板数据)与Python data analysis(Python 数据分析)之意. pandas有两个重要的数据结构:DataFrame和Series pandas数据结构之DataFrame pandas的DataFrame数据结构是一种带标签的二维对象,与Excel的电子表格或者关系型数据表非常相似. 可以用下列方式来创建DataFrame: 1.从另一个DataFrame创建DataFrame 2.…
Python是当今应用最广泛的编程语言之一,以其效率和代码可读性著称.作为一个科学数据的编程语言,Python介于R和java之间,前者主要集中在数据分析和可视化,而后者主要应用于大型应用.这种灵活性意味着Python可以作为一个单一工具来汇集整个工作流.也就是说Python本身是被允许扩充的,并非所有的特性和功能都集成到语言核心中.Python提供了丰富的API和工具,以便程序员能够轻松地使用C语言.C++.Cython来编写扩充模块.Python编译器本身也可以被集成到其它需要脚本语言的程序…
10-1 Python 学习笔记:在文本编辑器中新建一个文件,写几句话来总结一下你至此学到的Python 知识,其中每一行都以“In Python you can”打头.将这个文件命名为learning_python.txt,并将其存储到为完成本章练习而编写的程序所在的目录中.编写一个程序,它读取这个文件,并将你所写的内容打印三次:第一次打印时读取整个文件:第二次打印时遍历文件对象:第三次打印时将各行存储在一个列表中,再在with 代码块外打印它们. 新建文件learning_python.tx…
Python 数据分析中常用的可视化工具 1 Matplotlib 用于创建出版质量图表的绘图工具库,目的是为 Python 构建一个 Matlab 式的绘图接口. 1.1 安装 Anaconada 自带. pip 安装 pip install matplotlib 1.2 引用 import matplotlib.pyplot as plt 1.3 常用方法 figure Matplotlib 的图像均位于 figure 对象中 创建 figure fig = plt.figure() sub…
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具,需要的朋友可以参考下 Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性.Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力. Python数据分析需要安装的第三…
最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且答住提供的“from pylab import *”的方法也不太符合编程规范,最后在Stackoverflow找到了想要的答案,特在此分析一下给大家: 以下是有问题的代码,不能绘图成功: import pandas as pd from numpy import * import matplotlib.pyp…
1 私有属性的使用方式 在python中,没有类似private之类的关键字来声明私有方法或属性.若要声明其私有属性,语法规则为: 属性前加双下划线,属性后不加(双)下划线,如将属性name私有化,则 __name 即可. (实际上,属性前加单下划线,属性后不加下划线也可以 _name ) 1)以一个下划线开头的标识符(_xxx),不能访问的方法或属性,但可通过类提供的接口进行访问, 不会被语句 from module import * 语句加载. 单下划线开头的方式或属性:弱”内部使用“标识,…
本文转载自:https://blog.csdn.net/sinat_14849739/article/details/79101529 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/sinat_14849739/article/details/79101529 转载请注明出处:http://blog.csdn.net/sinat_14849739/article/details/79101529 本文出自Shawpoo的专栏 我的简书:简书 […
目录 ⼀.类的成员介绍: 二.类的成员-变量 三.类的成员-方法 四.类的成员-属性 五.私有属性 ⼀.类的成员介绍: ⾸先, 什么是类的成员. 很简单. 我么能在类中写什么? 写的内容就是成员. 到⽬前为⽌. 我们 已经学过了⼀些成员了. class Foo: def __init__(self, a, b): self.a = a # 这里的self.a和self.b都是成员 self.b = b def method(self): # 方法也是类的成员 pass 在上⾯代码中__init_…
Python基础 首先推荐学习Python基础的教程和书籍 视频教程推荐南京大学张莉老师在cousera上的教程用Python玩转数据 入门教程<Python基础教程> 数据挖掘教程<利用Python进行数据分析> 工具推荐 编辑器:Sublime Text,这款编辑器真的非常好用,插件丰富,可以实现代码高亮,直接运行编码:而且这款编辑器还可以用来做其他开发,java,html等. Python Shell: IPython,推荐使用,详见我的另外一篇文章<IPython&g…
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记:         请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho…
一直想写点Python的笔记了,今天就闲着无聊随便抄点,(*^__^*) 嘻嘻…… -------------------------------------------------------------------------------------- 数据分析的几大任务: 搜集:与外界进行交互,读写各种各样的文件格式和数据库 准备:对数据进行清理.休整.整合.规范化.重塑.切片切块.变形等处理以便进行分析. 建模和计算:将数据跟统计模型.机器学习算法或其它计算工具联系起来. 展示:创建交互…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
本章讨论Python的内置功能,这些功能本书会用到很多.虽然扩展库,比如pandas和Numpy,使处理大数据集很方便,但它们是和Python的内置数据处理工具一同使用的. 我们会从Python最基础的数据结构开始:元组.列表.字典和集合.然后会讨论创建你自己的.可重复使用的Python函数.最后,会学习Python的文件对象,以及如何与本地硬盘交互. 3.1 数据结构和序列 Python的数据结构简单而强大.通晓它们才能成为熟练的Python程序员. 元组 元组是一个固定长度,不可改变的Pyt…
人生苦短,我学python学习笔记目录: week1 python入门week2 python基础week3 python进阶week4 python模块week5 python高阶week6 数据结构与算法week7 GUI编程week8 网络编程与并发编程(操作系统)week9 数据库入门week10 常用数据库week11 LINUX操作系统week12 - week16 前端学习week17 网络框架之入门week18 网络框架之django框架week19 网络框架之flask框架we…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
本节概要 - 数据类型 - 数据结构 - 数据的常用操作方法 数据类型 基础铺垫 定义 我们搞数据时,首先要告诉Python我们的数据类型是什么 数值型:直接写一个数字即可 逻辑型:True,False(首字母大写) 字符型:单引号.双引号.三引号 赋值 用等号给变量贴标签 变量-赋值的对象是变量 命名规则 命名规则 逻辑型(Logical) 布尔值:只有两种取值(0和1,True和False) 运算规则: 运算符 注释 规则 & 与 一个为假,结果为假 | 或 一个为真,结果为真 not 非…