损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至于目标函数(Objective function),字面一些,就是有某个(最优化)目标的函数,比如最优化这个目的.没有找到定义,个人理解,目标函数是一个大类,包含损失函数.代价函数:损失函数.代价函数,属于目标函数.…
1损失函数和代价函数的区别: 损失函数(Loss function):指单个训练样本进行预测的结果与实际结果的误差. 代价函数(Cost function):整个训练集,所有样本误差总和(所有损失函数总和)的平均值.(这一步体现在propagate()函数中的第32行)…
在这节中主要讲的是如何更好地拟合逻辑回归模型的参数θ.具体来说,要定义用来拟合参数的优化目标或者叫代价函数,这便是监督学习问题中的逻辑回归模型的拟合问题. 我们有一个训练集,训练集中有m个训练样本:{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))},像之前一样,每个样本用n+1维特征向量表示,如下:     和以前一样x0=1,第0个特征一直是1.而且因为这是一个分类问题的训练集,所以所有的标签y不是0就是1.假设函数如下所示,它的参数是θ.     下面要讲的问…
一.简介 1.在线性回归中,我们有一个这样的训练集,M代表训练样本的数量,假设函数即用来进行预测的函数是这样的线性函数的形式,我们接下来看看怎么选择这两个参数: 2.如下图中,怎么选择两个参数来更好的拟合数据呢? 我们要尽量选择参数值,使得在训练集中,给出训练集中的x值,合理准确的预测y值.在线性回归中,我们要解决的是要在线性回归中最小化的问题,我们希望预测值和真是值之间的差值变小,就是要减少预测值和真实值之间的方差的值,我们使用(xi,yi)代表第i个样本,我们要做的是对M个样本,求出其真实值…
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每一个样本本身有n维特征. 再加上一个偏置项x0, 则每一个样本包括n+1维特征: x=[x0,x1,x2,⋯,xn]T 当中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了例如以下定义: 分类是监督学习的一个核心…
实际上,代价函数(cost function)和损失函数(loss function 亦称为 error function)是同义的.它们都是事先定义一个假设函数(hypothesis),通过训练集由算法找出一个最优拟合,即通过使的cost function值最小(如通过梯度下降),从而估计出假设函数的未知变量. 例如: 可以看做一个假设函数,而与之对应的loss function如下: 通过使E(w)值最小,来估计出相应的w值,从而确定出假设函数(目标函数),实现最优拟合. 硬要说区别的话,l…
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”).   一.损失项 对回归问题,常用的有:平方损失(for linear regression),绝对值损失: 对分类问题,常用的有…
了解LR的同学们都知道,LR采用了最小化交叉熵或者最大化似然估计函数来作为Cost Function,那有个很有意思的问题来了,为什么我们不用更加简单熟悉的最小化平方误差函数(MSE)呢? 我个人理解主要有三个原因: MSE的假设是高斯分布,交叉熵的假设是伯努利分布,而逻辑回归采用的就是伯努利分布: MSE会导致代价函数$J(\theta)$非凸,这会存在很多局部最优解,而我们更想要代价函数是凸函数: MSE相对于交叉熵而言会加重梯度弥散. 这里着重讨论下后边两条原因. 代价函数为什么要为凸函数…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第7课时<代价函数>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. In this video (article), we'll define something called the cost function. This will let us figure…
在Machine Learning的Regression Problem中,常用Quadratic Function来做Cost Function,用以表征Hypothesis与Y之间的差距.而通过Gradient Descent来不断调整参数,从而缩小这个Gap从而训练我们的算法. 而在Neural Network的Classification Problem中,如果依然使用Quadratic Function,则会出现学习速率过慢的问题,这时我们就需要选用Cross-entropy来做Cos…