虽然SVM本身算法理论,水比较深,很难懂 但是基本原理却非常直观易懂,就是找到与训练集中支持向量有最大间隔的超平面 形式化的描述: 其中需要满足m个约束条件,m为数据集大小,即数据集中的每个数据点function margin都是>=1,因为之前假设所有支持向量,即离超平面最近的点,的function margin为1 对于这种有约束条件的最优化问题,用拉格朗日定理,于是得到如下的形式, 现在我们的目的就是求出最优化的m个拉格朗日算子,因为通过他们我们可以间接的算出w和b,从而得到最优超平面 考…
1. SVM hypothsis 2. large margin classification 3. kernals and similarity if  f1 = 1; if x if far from l^(1), f1 = 0 4. SVM with kernels 5. SVM parameters 6. Multi-class classification 7. Logistic regression vs SVMs…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.coursera.org/course/ml 大家对于支持向量机(SVM)可能会比较熟悉,是个强大且流行的算法,有时能解决一些复杂的非线性问题.我之前用过它的工具包libsvm来做情感分析的研究,感觉效果还不错.NG在进行SVM的讲解时也同样建议我们使用此类的工具来运用SVM. (一)优化目标(Opt…
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SVM 本文要点 1.Please explain Support Vector Machines (SVM) like I am a 5 year old - Feynman Technique 2.kernel trick 一.术语解释 1.1 what is support vector? 从名词…
Support Vector Machines for classification To whet your appetite for support vector machines, here’s a quote from machine learning researcher Andrew Ng: “SVMs are among the best (and many believe are indeed the best) ‘off-the-shelf’ supervised learni…
Traditionally, many classification problems try to solve the two or multi-class situation. The goal of the machine learning application is to distinguish test data between a number of classes, using training data. But what if you only have data of on…
引言 这一讲及接下来的几讲,我们要介绍supervised learning 算法中最好的算法之一:Support Vector Machines (SVM,支持向量机).为了介绍支持向量机,我们先讨论"边界"的概念,接下来,我们将讨论优化的边界分类器,并将引出拉格朗日数乘法.我们还会给出 kernel function 的概念,利用 kernel function,可以有效地处理高维(甚至无限维数)的特征向量,最后,我们会介绍SMO算法,该算法说明了如何高效地实现SVM. Margi…
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machine) 是一个更加强大的算法,广泛应用于工业界和学术界.与逻辑回归和神经网络相比, SVM在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式.我们通过回顾逻辑回归,一步步将其修改为SVM. 首先回顾一下逻辑回归: 其 cost function 公式如下(这里稍微有点变化,将负号移到了括号内…
支持向量机(Support Vector Machines) 优化目标(Optimization Objective) 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用算法 A 还是算法 B ,其实一个算法的表现通常依赖于你的水平.例如:你为算法所设计或选择的特征.正则化参数的选取.学习曲线.误差分析.算法评估,等等诸如此类的细节决定了一个算法的性能. 在机器学习领域中,还有一个更加强大的监督学习算法被广泛地应用于工业界和学术界…