0x00 预备知识 $\DeclareMathOperator{\vol}{vol}$ 无向图上的随机游走 无向图 $G=(V,E)$,边权函数 $w\colon V\times V \to R_+$ . 若 $(u,v) \notin E $ 则 $w(u,v) = w(v,u) = 0$,否则 $w(u,v) , w(v,u) > 0$ 令 $d(u) = \sum_{v\in V} w(v, u)$ 先不管建图的细节(比如 $G_m$ 的边权(edge strength 是如何确定的)),…
论文网址: https://arxiv.org/abs/1311.2524 RCNN利用深度学习进行目标检测. 摘要 可以将ImageNet上的进全图像分类而训练好的大型卷积神经网络用到PASCAL的目标检测中? 答案是肯定的,并且结果是简单的,可扩展的,相对于可变部件模型(DPM)将平均精度提高了40%以上(在VOC 2007年达到最终的mAP为48%).我们的网络框架结合强大的产生自下而上的候选区域的计算机视觉技术和在学习高容量卷积神经网络中的最新进展.我们称之为R-CNN:具有CNN特征的…
Introduction (1)IVPR问题: 根据一张图片从视频中识别出行人的方法称为 image to video person re-id(IVPR) 应用: ① 通过嫌犯照片,从视频中识别出嫌犯: ② 通过照片,寻找走失人口. (2)图片-视频行人匹配问题的描述: (3)IVPR的难点: ① 图像.视频的特征不同:视频包含视觉外貌特征(visual appearance features)和时空特征(spatial-temporal features),而图片只包含视觉外貌特征: ② I…
论文题目<Hyperspectral Image Classification With Deep Feature Fusion Network> 论文作者:Weiwei Song, Shutao Li, Leyuan Fang,Ting Lu 论文发表年份:2018 网络简称:DFFN 发表期刊:IEEE Transactions on Geoscience and Remote Sensing  一.本文提出的挑战 1.由于光谱混合和光谱特征空间变异性的存在,HSIs通常具有非常复杂的空间…
Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive visual tracking approach 通过 weighted entropy 进行多特征融合.并非像许多方法所做的简单的链接在一起的方法,本文采用加权的 entropy 来评价目标状态和背景状态之间的区分性,…
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度. 采用VGG16的网络:VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers Introduction 物体检测相对于图像分类是更复杂的,应为需要物体准确的位置…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下: 此处,作者强调了一点不同之处: Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects with…