CNN网络结点计算总结(1998)】的更多相关文章

图 来源:Gradient-Based Learning Applied to Document Recognition 参阅CSDN:https://blog.csdn.net/dcxhun3/article/details/46878999 c1 156=(5*5+1)*6 122304=(5*5+1)*6*28*28 s2 12=6*(1+1)(1+1为可训练参数加偏移) 5880=(2*2+1)*14*14*6 c3 1516=6*(3*5*5+1)+9*(4*5*5+1)+6*5*5+…
CNN 时间计算复杂度与空间复杂度 即,连续个数与参数个数, 每一个连接都意味着一个计算, 每一个参数都意味一个存储单元. 只计算主要部分. CNN局部连接与权值共享 如图所示: 全连接:如左图所示,全连接情况下,输入图片为1000x1000像素的图片, 隐藏层为同样的1000x1000个神经元(即1M):每个神经元都与所有的输入像素相连接,总计10^12权值(即,可训练参数): 局部连接:如右图所示,局部连接情况下,输入图片为1000x1000像素的图片, 隐藏层为同样的1000x1000个神…
表1 CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) >200 >500 90-100 参数(百万) 60 138 23.2 计算量(百万) 720 15300 5000 1. CNN模型具体分析(以AlexNet网络模型为例) 1.1 网络结构 图1 AlexNet网络结构 AlexNet有5个卷积层和3个全连接层 C1:96×11×11×3 (卷积核个数/宽/高/深度)               34848个 C2:25…
无痛理解CNN中的感受野receptive field CNN中感受野的计算 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是决定某一层输出结果中一个元素所对应的输入层的区域大小 感受野计算时有下面的几个情况需要说明: a)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小: b)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系: c)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小. 至于如何计算感受野,我的建议是top to…
1.FLOPs的概念:全称是floating point operations per second,意指每秒浮点运算次数,即用来衡量硬件的计算性能:在CNN中用来指浮点运算次数: 2.计算过程: 如上,根据上图来计算第一层卷积层的FLOPs: 对于某个卷积层,它的FLOPs数量为:,其中表示该层参数的数目. 这里AlexNet网络第一卷积层为例,它的FLOPs数目为: .…
作者:十岁的小男孩 目录 单层卷积核计算 三维卷积核计算 Padding=Valid&&Same 总结…
之前的博文已经介绍了CNN的基本原理,本文将大概总结一下最近CNN在NLP中的句子建模(或者句子表示)方面的应用情况,主要阅读了以下的文献: Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014. Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural networ…
卷积神经网络(Convolutional neural networks,CNNs)来源于对大脑视觉皮层的研究,并于1980s开始应用于图像识别.现如今CNN已经在复杂的视觉任务中取得了巨大成功,比如图像搜索,自动驾驶,语言自动分类等等.同时CNN也应用于了其他领域,比如语音识别和自然语言处理. 13.1 视觉皮层机理 David H. Hubel和Torsten Wiesel于1958.1959年在猫的身上做实验,给出了关于视觉皮层结构的深刻见解(作者因此与1981年获得诺贝尔生物或医学奖).…
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程…
卷积神经网络 LeNet-5各层参数详解 LeNet论文阅读:LeNet结构以及参数个数计算     LeNet-5共有7层,不包含输入,每层都包含可训练参数:每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元. 1. C1层是一个卷积层 输入图片:32*32 卷积核大小:5*5 卷积核种类:6 输出featuremap大小:28*28 (32-5+1) 神经元数量:28*28*6 可训练参数:(5*5+1)…
CNN的计算方式: w1 = (w - F_w + 2p) / s_w + 1 h1 = (h - F_h + 2p) / s_h + 1 其中 w, h 分别为上一层的宽高, Filters(kernel)的大小为 F_w, F_h strides 步长为: s_w, s_h p 为padding 的大小 DeCNN 的计算方式: w1 = (w -1 )* s_w + F_w - 2p h1 = (h -1 )* s_h + F_h - 2p 其中 w, h 分别为上一层的宽高, Filte…
畅通project再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 18411    Accepted Submission(s): 5769 Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其它的小岛时都要通过划小船来实现. 如今政府决定大力发展百岛…
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的  "Optimizing CNN Model Inference on CPUs" 原文链接: https://arxiv.org/abs/1809.02697 翻译:coneypo,working in Intel for IoT 这篇文章介绍了基于 TVM 改进的 NeoCPU 方案,在 CPU 上进行 CNN 模型推理优化: 与之对比是 Intel 的 OpenVINO 版本(2018.5 ,最新的…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看懂.在最后会有完整的源代码.处理后数据的分享链接.转载请保留原文链接,谢谢. UCI手写数字的数据集 源数据下载:http://oddmqitza.bkt.clouddn.com/ar…
参考列表 Selective Search for Object Recognition Selective Search for Object Recognition(菜菜鸟小Q的专栏) Selective Search for Object Recognition(Surge) Selective Search for Object Recognition(原始论文) Efficient Graph-Based Image Segmentation(快速图像分割) Homepage of K…
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object Detection进展缓慢,在DPM之后没有大的进展,直到CVPR2014,RBG大神(Ross Girshick)把当时爆火的CNN结合到Detection中,将PASCAL VOC上的准确率提高到53.7%,本文为你解读RBG的CVPR2014 paper: Rich feature hierar…
paper url: https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf year: 2014 abstract 这篇文章出发点是如何减少图像相关任务的计算量, 提出通过使用 attention based RNN 模型建立序列模型(recurrent attention model, RAM), 每次基于上下文和任务来适应性的选择输入的的 image patch, 而不是整张图片, 从而使得计算量…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
多层神经网络的实质就是为了找出更复杂,更内在的features...图像的style, how to describe, impossible! 但是人眼却可以分辨. (参考论文 A Neural algorithm of artistic style)使用卷积神经网络来做  content, style reconstruction. loss= content loss+ style loss content reconstruction: 经过pre-trained 的vgg16 的卷积网…
这几天在看<Rich feature hierarchies for accurate object detection and semantic segmentation >,觉得作者的科研素养非常棒,考虑问题很全面而且很有逻辑性: 不过暂时有的地方看的也不是太懂,这里转载了一篇博客中的介绍,博主写的不错: 博客链接:http://blog.csdn.net/wopawn/article/details/52133338 paper链接:链接: https://pan.baidu.com/s…
深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b 2. https://medium.com/ai%C2%B3-theory-practice-bus…
卷积神经网络CNN(YannLecun,1998年)通过构建多层的卷积层自动提取图像上的特征,一般来说,排在前边较浅的卷积层采用较小的感知域,可以学习到图像的一些局部的特征(如纹理特征),排在后边较深的卷积层采用较大的感知域,可以学习到更加抽象的特征(如物体大小,位置和方向信息等).CNN在图像分类和图像检测领域取得了广泛应用.   CNN提取的抽象特征对图像分类.图像中包含哪些类别的物体,以及图像中物体粗略位置的定位很有效,但是由于采用了感知域,对图像特征的提取更多的是以"一小块临域"…
显著性对象检测综述 详见:http://mmcheng.net/zh/paperreading/ 一.    程明明等人的论文:Salient Object Detection: A Survey(简单归纳了文章中的我认为比较重要的部分) 该论文旨在全面回顾突出显示目标检测的最新进展,并将其与其他密切相关领域(如通用场景分割,目标建议生成以及固定预测的显著性)相关联.主要内容涉及(1)根源,关键概念和任务:(2)核心技术和主要建模趋势,以及(3)显著性物体检测中的数据集和评估指标.讨论并提出了未…
英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/kkk584520/article/details/47450159 [0. 摘要] CNN已经广泛用于图像识别,因为它能模仿生物视觉神经的行为获得很高识别准确率.最近,基于深度学习算法的现代应用高速增长进一步改善了研究和实现.特别地,多种基于FPGA平台的深度CNN加速器被提出,具有高性能.可重配置…
模型结构与原理 1. 基于CNN的句子建模 这篇论文主要针对的是句子匹配(Sentence Matching)的问题,但是基础问题仍然是句子建模.首先,文中提出了一种基于CNN的句子建模网络,如下图: 图中灰色的部分表示对于长度较短的句子,其后面不足的部分填充的全是0值(Zero Padding).可以看出,模型解决不同长度句子输入的方法是规定一个最大的可输入句子长度,然后长度不够的部分进行0值的填充:图中的卷积计算和传统的CNN卷积计算无异,而池化则是使用Max-Pooling. 卷积结构的分…
论文地址:https://arxiv.org/pdf/1311.2524.pdf 翻译请移步: https://www.cnblogs.com/xiaotongtt/p/6691103.html https://blog.csdn.net/v1_vivian/article/details/78599229 背景: 1.近10年以来,以人工经验特征为主导的物体检测任务mAP[物体类别和位置的平均精度]提升缓慢: 2.随着ReLu激励函数.dropout正则化手段和大规模图像样本集ILSVRC的出…