摘录的一篇有关求解非线性最小二乘问题的算法--LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合. LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点.LM算法属于一种"信赖域法"--所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是…
高斯牛顿法: function [ x_ans ] = GaussNewton( xi, yi, ri) % input : x = the x vector of 3 points % y = the y vector of 3 points % r = the radius vector of 3 circles % output : x_ans = the best answer % set up r equations r1 = @(x, y) sqrt((x-xi(1))^2+(y-y…