Andrew Ng机器学习课程16】的更多相关文章

Andrew Ng机器学习课程16 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了ICA算法,并利用最大似然估计和随机梯度上升算法进行求解,得到了ICA算法的迭代公式.主要用于从混叠信号中恢复出原始信号. 2015-10-9 艺少…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候).所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考. 1. 内容概要 Introduction 什么是机器学习 监督学习 非监督学习 Linear R…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题 简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况 回归…
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.有时候…
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第一章线性回归,主要介绍了梯度下降法,正规方程,损失函数,特征缩放,学习率的选择等等 1.梯度下降法 原理图解: (1)  目标:最小化建立…
Andrew Ng机器学习课程6 说明 在前面尾随者台大机器学习基石课程和机器学习技法课程的设置,对机器学习所涉及到的大部分的知识有了一个较为全面的了解,可是对于没有动手敲代码并加以使用的情况,基本上是不可能掌握好的.特别是我的学习进程是袭击式的,因此.会非常快忘掉.心中仅仅剩下一个主要的纲要,所以后面要通过解说更为具体的Andrew Ng教授的机器学习课程进行回想和总结,希望能够抓住它的来龙去脉. 所以总结的内容主要是推导的思路.仅仅要能够把握住思路,就能保持长久的记忆. 主要内容 朴素贝叶斯…
Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训练样本.到这里需要指出一点,这个结果是基于empirical risk minimization得到的,而对于那些大部分的discriminative的学习算法采用的通过最小化training error或者training error的近似值,前面推导的结论并不总是可以用,而对于non_ERM 学…
Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一共有k=264d,那么训练样本的数量由上一节课的公式可推出训练样本的数量为: m≥O(dγ2log1δ) .为保证ERM在这样的hypothesis set上能够达到一定的error bound,训练样本的数量需要达到上式得要求. VC dimension 假定有d个点的数据集S,hypothesi…
Andrew Ng机器学习课程9-补充 首先要说的还是这个bias-variance trade off,一个hypothesis的generalization error是指的它在样本上的期望误差,这个样本不一定是在training set中的.所以出现了两部分的误差,bias是指的是偏差,未能捕获由数据展示出的结构,underfit,large bias.variance指的是把碰巧出现在训练集数据的pattern给捕获了,但是有限的训练样本并不能反映wider pattern of the…
Andrew Ng机器学习课程9 首先以一个工匠为例,说明要成为一个出色的工匠,就需要掌握各种工具的使用,才能知道在具体的任务中选择什么工具来做.所以今天要讲的就是机器学习的理论部分. bias variance trade off,以线性回归为例,underfitting对应high的bias(偏差),overfitting对应high的variance(方差),主要是拟合出了一些奇怪的特性.同样的对于分类问题,复杂的分类边界(decision boundary)也可能出现high varia…
Andrew Ng机器学习课程17(2) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了利用value iteration和policy iteration两种迭代算法求解MDP问题,还介绍了在实际应用中如何通过积累"经验"更新对转移概率和reward的估计的学习模型,并结合两种迭代算法进行求解的完整过程. 2015-10-11 艺少…
Andrew Ng机器学习课程17(1) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了强化学习与监督学习的设定上的区别,以及强化学习的框架,结合着马尔可夫决策过程来公式化描述强化学习通常的形式. 2015-10-10 艺少…
Andrew Ng机器学习课程15 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了主成分分析,从基本的直观观念出发逐渐推导至公式化的描述,得到解决PCA的奇异值分解方法.最后介绍了一下PCA的应用,对于特征的可视化压缩是一个非常直观的应用. 关于奇异值分解及其应用可以参看我的博文< 矩阵分解之奇异值分解>有着精彩而详细的论述. 2015-10-9 艺少…
Andrew Ng机器学习课程14(补) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 利用EM对factor analysis进行的推导还是要参看我的上一篇博文<Andrew Ng机器学习课程13>中关于EM的运算推导过程,才能对factor analysis中的相关转换有所理解. 一个具体的应用例子: 例如,在企业形象或品牌形象的研究中,消费者可以通过一个有 24 个指标构成的评价体系,评价百货商场的 24 个方面的优劣.但消费者主要关心的是三个…
Andrew Ng机器学习课程14 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要介绍了当数据量不足,利用EM算法对混合高斯模型进行建模时数据量比较少时,得到的协方差矩阵是一个奇异矩阵,即行列式为0,也就是协方差矩阵的逆矩阵是不存在的,所以也就无法使用混合高斯进行建模.需要对 协方差矩阵进行限制,比如对角阵或者是单位矩阵等.这样限制之后实际上是认为不同维的数据之间没有相关性,因此不能把握数据不同维之间的相关性.而本文介绍的factor ana…
Andrew Ng机器学习课程13 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要从一般的角度介绍EM算法及其思想,并推导了EM算法的收敛性.最后用一般的EM算法回顾了混合高斯模型的求解过程,并推导了通过EM算法求解混合高斯模型参数的过程.视频笔记会通过增补内容加以补充. 2015-9-30 艺少…
Andrew Ng机器学习课程12 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要讲述了batch learning和online learning的区别,然后介绍了经典的非监督算法:k-means算法.然后介绍了混合高斯模型以及求解时采用的EM算法.本文是基于lecture notes进行的总结,等上完视频课,会通过12课补充来丰富这些内容. 2015-9-29 艺少…
Andrew Ng机器学习课程11之使用machine learning的建议 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 2015-9-28 艺少…
Andrew Ng机器学习课程11之贝叶斯统计和正则化 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 在统计学中有两个学派,一个是频率学派,另一个是贝叶斯学派.频率学派认为参数θ是一个固定的值,而不是随机变量,只不过是不知道它的值而已:而贝叶斯学派则认为任何参数θ都是一个随机变量,也有自己的概率分布.所以这两个学派分别形成了最大似然估计(maximum likelihood estimate,MLE)和最大后验估计(maximum a posterio…
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征.通过推荐系统(recommender systems),将领略一小部分特征学习的思想. 假使有 5 部电影,3部爱情片.2部动作片.  4 个用户为其中的部分电影打了分.现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据. 下面引入一些标记:nu     …
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好,我们还会学习如何解决处理偏态数据(skewed data). 以下内容部分参考我爱公开课-Advice for applying machine learning 一.内容概要 Evaluating a learning algorithm Deciding what to try next(决定…
一.内容概要 Photo OCR Problem Decription and pipeline(问题描述和流程图) Sliding Windows(滑动窗口) Getting Lots of Data and Artificial Data Ceiling Analysis(上限分析):What part of the pipline to Work on Next 二.重点&难点 1. Problem Decription and pipeline 为了实现图像文字识别通常按如下流程图进行操…
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法的一个常见应用.这种算法虽然主要用于无监督学习问题,但从某些角度看,它又类似于一些监督学习问题.举例: 当飞机引擎从生产线上流出时需要进行QA(质量控制测试),数据集包含引擎的一些特征变量,比如运转时产生的热量,或者振动等.当有一个新的飞机引擎从生产线上流出,它具有特征变量 xtest .异常检测问…
目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无监督学习 - Reinforcement learning 强化学习 - Recommender systems 推荐系统 1.2.3 课程目的 如何在构建机器学习系统时,选择最好的实践类型决策.节省时间. 1.3 监督学习 1.3.1 Regression 回归问题 1.3.2 Classific…
Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.html Exercise 2:Logistic Regression---实现一个逻辑回归 问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学. 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录…
Neural Networks: Learning 内容较多,故分成上下两篇文章. 一.内容概要 Cost Function and Backpropagation Cost Function Backpropagation Algorithm Backpropagation Intuition Backpropagation in Practice Implementation Note:Unroll Parameters Gradient Checking Random Initializa…