pytorch-VGG网络】的更多相关文章

VGG论文给出了一个非常振奋人心的结论:卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用.记得在AlexNet论文中,也做了最后指出了网络深度的对最终的分类结果有很大的作用.这篇论文则更加直接的论证了这一结论. 网络结构 论文指出: VGG不仅在ILSVRC的分类和检测任务中取得了the state-of-the-art的精度 在其他数据集上也具有很好的推广能力 结构Architecture 说明: *1x1卷积核:降维,增加非线性性 *3x3卷积核:多个卷积核叠加,增…
在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用. 一 简介 slim被放在tensorflow.contrib这个库下面,导入的方法如下: import tensorflow.contrib.slim as slim 这样我们就可以使用slim了,既然说到了,先来了解tensorflow.contrib这个库,tensorflow官方对它的描述…
本博客参考作者链接:https://zhuanlan.zhihu.com/p/41423739 前言: VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了).该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能.VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样. VGG原理 VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
1.文章原文地址 Very Deep Convolutional Networks for Large-Scale Image Recognition 2.文章摘要 在这项工作中,我们研究了在大规模的图像识别数据集上卷积神经网络的深度对准确率的影响.我们主要贡献是使用非常小(3×3)卷积核的架构对深度增加的网络进行全面的评估,其结果表明将深度增大到16-19层时网络的性能会显著提升.这些发现是基于我们在ImageNet Challenge 2014的目标检测和分类任务分别获得了第一名和第二名的成…
网络中的网络NIN 之前介绍的LeNet,AlexNet,VGG设计思路上的共同之处,是加宽(增加卷积层的输出的channel数量)和加深(增加卷积层的数量),再接全连接层做分类. NIN提出了一个不同的思路,串联多个由卷积层和'全连接层'(1x1卷积)构成的小网络来构建一个深层网络. 论文地址:https://arxiv.org/pdf/1312.4400.pdf nin的重点我总结主要就2点: mlpconv的提出(我们用1x1卷积实现),整合多个feature map上的特征.进一步增强非…
讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700934.html 与上篇不同的是,这次我们新加了一些相关的实现,接下来我们慢慢来看. 利用pytorch搭建多层感知机分类的整个流程 导入相关包 from sklearn.datasets import load_digits from sklearn.model_selection import…
目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 1.1 MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 ​ ​ 本文使用第一种方法获取数据集,并使用Dataloader进行按批装载.如果使用程序下载失败,请将其…
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视化的重要性: 深度学习很多方向所谓改进模型.改进网络都是在按照人的主观思想在改进,常常在说模型的本质是提取特征,但并不知道它提取了什么特征.哪些区域对于识别真正起作用.也不知道网络是根据什么得出了分类结果.为了增强结果的可解释性,需要给出模型的一些可视化图来证明模型或新methods对于任务的作用,…
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么. 自定义网络特征可视化 代码: # coding: utf-8 from keras.models import Model import cv2 import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers.convolutional import Convolution2D…