题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解 我依然啥都不会啊-- 先给\(A,B\)数组从小到大排序. 考虑容斥,设\(f[j]\)表示钦定了\(j\)个满足\(A>B\), 所有钦定方案的方案数总和. 这个怎么算?dp算.设\(dp[i][j]\)表示前\(i\)个的\(f[j]\), 然后发现转移的时候并不知道之…
嘟嘟嘟 题中给的\(k\)有点别扭,我们转换成\(a > b\)的对数是多少,这个用二元一次方程解出来是\(\frac{n + k}{2}\). 然后考虑dp,令\(dp[i][j]\)表示前\(i\)个数中,有\(j\)对满足\(a > b\)的方案数,转移的时候考虑这一组是否满足\(a > b\)即可:\(dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1] * (num[i] - (j - 1))\).其中\(num[i]\)表示比\(a[i]\)小…
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- 如果:$f(n)=\sum_{i=0}^{n}C(n,i)g(i)$ 那么:$g(n)=\sum_{i=0}^{n}(-1)^{n-i}\ C(n,i)f(i)$ ---------------------------- 如果:$f(k)=\sum_{i=k}^{n}C(i,k)g(i)$ 那么:…
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) 互不相等.将糖果和药片一一对应,求 糖果能量大于药片 比 药片能量大于糖果 多 \(k\) 组的方案数. 数据范围:\(1\le n\le 2000\),\(0\le k\le n\). 萌新初学二项式反演,这是第一道完全自己做出来的题,所以写篇题解庆祝并提升理解. 有 \(\frac{n+k}{2…
以前开过一遍这题,以为很难没刚下去 今天$ review$一遍分析了一下感觉也还好 luogu 4859 题意:给定长度为$ n \leq 2000$的数组$ A,B$求完全匹配使得$A>B$的对数比$A<B$的对数恰好多$k$组的方案数 $ Solution:$ 直接$DP $是$ n^3$的 考虑容斥 先将$ A,B$从小到大排序 设$ F_{i,j}$表示只考虑$ A$的前$ i$个物品,进行了$ j$次匹配均满足$ A>B$的方案数 显然每次$ A$能转移的是$B$的一段前缀区间…
已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了,在对\(\tt{Charlotte}\)的傀儡使用终曲--\(\tt{Tiro Finale}\)后,\(\tt{Mami}\)面临着即将被\(\tt{Charlotte}\)的本体吃掉的局面. 这时,已经多次面对过\(\tt{Charlotte}\)的\(\tt{Honiura}\)告诉了学\(…
传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\(k\)组糖果比药片大. 显然,\(a,b\)数组都要先从小到大排序.(\(a\)是糖果,\(b\)是药片) 考虑\(a_i\)造成的影响: 1.若它匹配了一个比它小的\(b\),则对于\(a_j,j>i\),它匹配比它小的\(b\)的方案数少了\(1\). 2.若它匹配了一个比它大的\(b\)--…
传送门 见计数想容斥 首先题目可以简单转化一下, 求 糖果比药片能量大的组数比药片比糖果能量大的组数多 $k$ 组 的方案数 因为所有能量各不相同,所以就相当于求 糖果比药片能量大的组数为 $(n+k)/2$ 组的方案数,如果 $(n+k)$ 为奇数则无解 发现这个 '恰好' 很不好算,考虑先算出 '至少',设 $F[i]$ 表示至少有 $i$ 对糖果比药片大的方案数 那么就是要强制选 $i$ 对糖果比药片大,然后再随便选,发现这个强制选 $i$ 对糖果比药片大的方案数也不好算.. 考虑先把糖果…
因为不存在任意两个数相同,那么设糖果比药片大的组有 \(x\) 个,药片比糖果大的组有 \(y\) 个,那么我们有: \[x + y = n, x - y = k \] 即: \[x = \frac{n + k}{2}, y = \frac{n - k}{2} \] 估本题实质上是问有多少种方案使得糖果比药片大的组恰好有 \(\frac{n + k}{2}\) 个,也就是有 \(\frac{n + k}{2}\) 个糖果匹配了比他小的药片.因为选择的顺序是没有关系的,因此为了能方便的知道当前这个…
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. 偶尔也会打一些比赛找找手感(比如HHHOJ的比赛,Luogu比赛,以及comet OJ上之前的CCPC题) CF和CC看情况,主要是我真的不太喜欢读英文题的恐怖感觉233 希望这段时间的努力可以让我不跪省选吧 2-26 早上晨跑完了就和杨浩讲了停课的事,不出意外地很轻松就通过了. 然后回班拿了点东…