Hanlp自然语言处理包中的基于HMM-Viterbi处理人名识别的内容大概在年初的有分享过这类的文章,时间稍微久了一点,有点忘记了.看了 baiziyu 分享的这篇比我之前分享的要简单明了的多.下面就把文章分享给大家交流学习之用,部分内容有做修改. 本文主要介绍一下HanLP是如何利用HMM来做人名识别的.基本思想是把词语序列作为观测序列,将角色序列作为隐藏序列,当模型预测出最佳隐藏状态序列后,利用模式最大匹配法,匹配出人名实体.下边说一模型的三要素在这个应用中所对应的内容,因为训练阶段就是要…
HanLP发射矩阵词典nr.txt中收录单字姓氏393个.袁义达在<中国的三大姓氏是如何统计出来的>文献中指出:当代中国100个常见姓氏中,集中了全国人口的87%,根据这一数据我们只保留nr.txt中的100个常见词语的姓氏角色,其他词语去掉其姓氏角色状态.过滤后,nr.txt中具有姓氏角色的单字共计97个.列于下表: 丁 万 乔 于 任 何 余 侯 傅 冯 刘 卢 史 叶 吕 吴 周 唐 夏 姚 姜 孔 孙 孟 宋 尹 崔 常 康 廖 张 彭 徐 戴 方 易 曹 曾 朱 李 杜 杨 林 梁…
热更新即在不重启进程或者不离开Python interpreter的情况下使得被编辑之后的python源码能够直接生效并按照预期被执行新代码.平常开发中,热更能极大提高程序开发和调试的效率,在修复线上bug中更是扮演重要的角色.但是要想实现一个理想可靠的热更模块又非常的困难. 1.基于reload reload作为python官方提供的module更新方式,有一定作用,但是很大程度上并不能满足热更的需求. 先来看一下下面的问题: >>> import sys, math >>…
http://www.hankcs.com/nlp/segment/ictclas-the-hmm-name-recognition.html 本文主要从代码的角度分析标注过程中的细节,理论谁都能说,但没几人能做出一个实用高效的系统.在得出粗分结果之后,需要对其进行人名.翻译人名.地名识别,然后重新KSP得出最终结果,在ICTCLAS中,这些标注都是通过HMM模型实现的. 人名识别例子 以“王菲”为例,粗分结果是“始##始, 王, 菲, 末##末,”,很明显,粗分过程并不能识别正确的人名,因为“…
版权声明:本文由文智原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/133 来源:腾云阁 https://www.qcloud.com/community [文智背后的奥秘]系列篇——基于CRF的人名识别 文智 标签: 人名识别 , 文智分析 2016-10-09 11:06:20 1378 一.命名实体识别 命名实体识别的主要任务就是从输入文本中把含有特定意义的词或者词组挑出来.命名实体根据其特点可以分为两大类,一类是…
HanLP中人名识别分析 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: 名字识别的问题 #387 机构名识别错误 关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES标签来分词的,B(开头…
HanLP中人名识别分析详解 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: l ·名字识别的问题 #387 l ·机构名识别错误 l ·关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES…
在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: u u名字识别的问题 #387 u u机构名识别错误 u u关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES标签来分词的,B(开头),M(…
这几天写完了人名识别模块,与分词放到一起形成了两层隐马模型.虽然在算法或模型上没有什么新意,但是胜在训练语料比较新,对质量把关比较严,实测效果很满意.比如这句真实的新闻“签约仪式前,秦光荣.李纪恒.仇和等一同会见了参加签约的企业家.”,分词结果:[签约/v, 仪式/n, 前/f, ,/w, 秦光荣/nr, ./w, 李纪恒/nr, ./w, 仇和/nr, 等/u, 一同/d, 会见/v, 了/ul, 参加/v, 签约/v, 的/uj, 企业家/n, ./w],三个人名“秦光荣”“李纪恒”“仇和”…
目前对中文分词精度影响最大的主要是两方面:未登录词的识别和歧义切分. 据统计:未登录词中中文姓人名在文本中一般只占2%左右,但这其中高达50%以上的人名会产生切分错误.在所有的分词错误中,与人名有关的错误占到了将近90%,这中国人名都是根据人的想法起的名字,有很大的随意性,并且数量巨大,规律也不尽相同. 1.理论简介 命名实体识别(Named Entities Recognition, NER)是自然语言处理(Natural LanguageProcessing, NLP)的一个基础任务.其目的…