和天梯中的直捣黄龙差不多.但是,通过这个问题,我对多参数最短路又有了更深一层的了解. 这题因为点数比较多,所以如果直接用大力学长的在G上dfs找最短路径的条数的话,会TLE,所以需要剪枝.剪枝方法是,在dfs中当遇到dis>d[u]就直接return.具体见代码: #include <stdio.h> #include <algorithm> #include <string.h> #include <vector> #include <map&…
<题目链接> 题目大意: 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队. 输入格式: 输入第一行给出4个正整数N.M.S.D,其中N(2)是城市的个数,顺便假设城市的编号为0~(N-1):M是快速道路的条数:S是出发地的城市编号:D是目的地的城市编号.…
L2-001 紧急救援 (25 分)   作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队. 输入格式: 输入第一行给出4个正整数N.M.S.D,其中N(2)是城市的个数,顺便假设城市的编号为0 ~ (:M是快速道路的条数:S是出发地的城市编号:D是目的地的…
1.了解知道Dropout原理 深度学习网路中,参数多,可能出现过拟合及费时问题.为了解决这一问题,通过实验,在2012年,Hinton在其论文<Improving neural networks by preventing co-adaptation of feature detectors>中提出Dropout.证明了其能有效解决过拟合的能力. dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络示意图如…
目录 分析ffmpeg源码 分析问题 修改源码解决问题 分析ffmpeg源码 分析问题 mpegtsenc.c 找到发送PAT.PMT的函数 /* send SDT, PAT and PMT tables regularly */ static void retransmit_si_info(AVFormatContext *s, int force_pat, int64_t dts) { MpegTSWrite *ts = s->priv_data; int i; if (++ts->sdt…
机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象.为了减小这种现象带来的影响,采用正则化.正则化,在减小训练样本误差的同时,限制参数的增长,限制参数过多或者过大,从而提高模型的泛化性. 1. L1 正则化 L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值: 2. L2 正则化 L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和: L1范式和L2范式的区别…
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概述 正则化(Regularization),L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者…
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/details/24971995 一.概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 二.区别: 1.L1是模型各个参数的绝对值之和. L2是模型各个参数的平方和的开方值. 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大…
1.概念  L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题  1)实现参数的稀疏有什么好处吗? 一个好处是可以简化模型,避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么对训练数据可以预测的很好,但是对测试数据就只能呵呵了.另一个好处是参数变少可以使整个模型获得更好的可解释性. 2)参数值越小代表模型越简单吗? 是的.为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会…
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的. 从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可.但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化.L1正则化是L0正则化的最优凸近似,比…