tensorflow学习笔记(3)前置数学知识】的更多相关文章

tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4*2+2 接下来是损失函数 主流的有均分误差,交叉熵,以及自定义 这里贴上课程里面的代码 # -*- coding: utf-8 -*- """ Created on Sat May 26 18:42:08 2018 @author: Administrator "&qu…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 首先看下它的数学表达式:decayed_learing_rate=learing_rate*decay_rate^(gloabl_steps/decay_…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早期一度被认为是一种无监督的特征学习(Unsuperbised Feature Learning),模仿了人脑的对特征逐层抽象提取的过程.这…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…