广义线性模型(logistic和softmax)】的更多相关文章

再谈广义线性模型之前,先来看一下普通线性模型: 普通线性模型的假设主要有以下几点: 1.响应变量Y和误差项ϵ正态性:响应变量Y和误差项ϵ服从正态分布,且ϵ是一个白噪声过程,因而具有零均值,同方差的特性. 2.预测量xi和未知参数βi的非随机性:预测量xi具有非随机性.可测且不存在测量误差:未知参数βi认为是未知但不具随机性的常数,值得注意的是运用最小二乘法或极大似然法解出的未知参数的估计值β^i则具有正态性. 广义线性模型(generalized linear model)正是在普通线性模型的基…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
1.广义线性模型 2.逻辑回归 3.softmax回归…
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导…
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 Logistic Regression 假设 $y|x ; \theta$ 服从 Bernoulli 分布. 这里来看线性回归,给定数据集 $\left \{ (x_i,y_i) \right \}_{i=1}^N$ ,$x_i$ 与 $y_i$ 的关系可以写成 $y_i = \theta^Tx_…
之前写的一篇感觉太 Naive ,这里重新写一篇作为总结.Logistic 与 Softmax 都是一种概率判别模型(PRML p203),Softmax 通常用在 Neural Network 里最后全连接层 ,Logistic 在业界更是普及,因为简单有效.便于并行.计算量小快,适合大规模数据等优点,而且采用 SGD 的 Logistic 相当于直接 Online Learning ,非常方便.本文将对两个模型展开详细介绍,从 exponential family 到 parallel 等都…
在线性回归问题中,我们假设,而在分类问题中,我们假设,它们都是广义线性模型的例子,而广义线性模型就是把自变量的线性预测函数当作因变量的估计值.很多模型都是基于广义线性模型的,例如,传统的线性回归模型,最大熵模型,Logistic回归,softmax回归. 指数分布族 在了解广义线性模型之前,先了解一下指数分布族(the exponential family) 指数分布族原型如下 如果一个分布可以用上面形式在表示,那么这个分布就属于指数分布族,首先来定义一下上面形式的符号: η:分布的自然参数(n…
指数分布族 The exponential family 因为广义线性模型是围绕指数分布族的.大多数常用分布都属于指数分布族,服从指数分布族的条件是概率分布可以写成如下形式:η 被称作自然参数(natural parameter),或正则参数canonical parameter),它是指数分布族唯一的参数T(y) 被称作充分统计量(sufficient statistic),很多情况下T(y)=y loga(η) 是log partition functione-a(η)是一个规范化常数,使得…
引言:通过高斯模型得到最小二乘法(线性回归),即:      通过伯努利模型得到逻辑回归,即:      这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. 广义线性模型 广义线性模型:广义线性模型是基于指数分布族(Exponential Family),而指数分布…
我们前面介绍的一般线性模型.Logistic回归模型.对数线性模型.Poisson回归模型等,实际上均属于广义线性模型的范畴,广义 线性模型包含的范围非常广泛,原因在于其对于因变量.因变量的概率分布等条件的限制放宽,使其应用范围加大. 广义线性模型由以下几个部分组成 1.因变量广义线性模型的因变量还是要去独立性,但是分布不再局限于正态分布一种,而是可以是指数族概率分布的任意一种,其方差也可 以不稳定,但必须要能表达为依赖均值的函数 2.线性部分广义线性模型因变量与自变量必须为线性关系,即因变量与…