bzoj 1406 数论】的更多相关文章

首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0,我们可以求出b,我们可以使x+1|a,x-1|b,然后我们可以构造所有满足被b整除的数,然后判断是否能被a整除, 然后再枚举x+1|b,x-1|a的情况,假设一组合法解不能拆开后被a,b分别整除,那么对于另外的a,b我们肯定可以再次枚举出这个解,然后对于相同的解用set去下重就可以了. 反思:手残…
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k *n = 1 (x + 1) * (x - 1) = k * n 设 n = a * b 则 a * b | (x + 1) * (x - 1) 那么枚举b即可 */ #include <cstdio> #include <cmath> #include <set> type…
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>   using namespace std;   type…
很简洁的题目.求出x^2%n=1的所有x<=n的值. n<=2e9. 直接枚举x一定是超时的. 看看能不能化成有性质的式子. 有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x+1=k1a,x-1=k2b. 不妨设a<=b.那么就能O(sqrt(n))枚举a. 然后再枚举x,验证x是否满足这两个式子.注意不能令x=k1a-1.由于a比较小,枚举x=k2b+1,k2b-1即可. 另外set很好用啊. # include <cstdio> # include <…
1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系.假设这个数是n,密码为x,那么可以得到如下表述: 密码…
今年的重庆省选? 具体就是,对于每次修改,A[p,q]这个位置,  设d=gcd(p,q) ,则 gcd为d的每一个格子都会被修改,且他们之间有个不变的联系 A[p,q]/p/q==A[k,t]/k/t   所以只要记录对于gcd为d的所有格子,只要保存A[d][d]的值就可以了. 那么求前k行k列的值ans,则所有gcd(p,q)==d的A[p,q]对答案的贡献就是    { 设k'=k/d;  (下取整)  f[k']*A[p,q]/(p/d)/(q/d) } 首先有个基本结论(当n>1时)…
看了Po神的题解一下子就懂了A了! 不过Po神的代码出锅了-solve中"d-temp"并没有什么用QwQQwQQwQ-应该把模数除以p^temp次方才行. 来自BZOJ讨论板的hack数据 hack data 1 5 3125 7812 正确输出应该是625, 但是很多人输出3125- CODE #include<bits/stdc++.h> using namespace std; typedef long long LL; const LL INF = 1e15; i…
直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #include<set> #include<algorithm> using namespace std; set <int> s; set <int> :: iterator it; ],cnt=; int main() { scanf("%d",…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2219 N次剩余+CRT... 就是各种奇怪的分类讨论.. #include<cstring> #include<iostream> #include<cstdio> #include<map> #include<cmath> #include<algorithm> #define rep(i,l,r) for (int i=l;i…
%%% PoPoQQQ x^2=kn+1 x^2-1=kn (x+1)(x-1)=kn 令x+1=k1*n1,x-1=k2*n2,其中k1k2=k,n1n2=n 因此我们可以枚举n的约数中所有大于等于$\sqrt{n}$的,分别作为n1和n2代入验证. 这么水的题我竟然没想出来TAT 复杂度$\sum_{d|n\&\&d<=\sqrt n}d$ #include<iostream> #include<cstring> #include<cstdio>…
首先我们知道对于f(x)来说,它是一个k次的多项式,那么f(x)的通项公式可以表示成一个k+1次的式子,且因为f(x)没有常数项,所以我们设这个式子为 f(x)=Σ(a[i]*x^i) (1<=i<=k+1) 那么比较显然的是f(x+1)-f(x)=(x+1)^k,因为(x+1)^k=Σc(k,i)*x^i (0<=i<=k),所以我们可以将这个式子的左右展开,可以得到 f(x+1)-f(x)=(x+1)^k    Σ(a[i]*(x+1)^i)-Σ(a[i]*x^i)=(x+1)…
思路: $(m%k+n%k>=k) *phi(k)$ $我们不妨设n=q_1k+r_1 m=q_2k+r$2 $n+m=(q_1+q_2)k+r1+r2$ ${\lfloor}\frac{n+m}{k}{\rfloor}-{\lfloor}\frac{m}{k}{\rfloor}-{\lfloor}\frac{n}{k}{\rfloor}=(m%k+n%k>=k)$ $原式=phi(k)*({\lfloor}\frac{n+m}{k}{\rfloor}-{\lfloor}\frac{m}{k}…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于所有的a,b(a < b) 如果x是符合要求的x. 那么一定会有某些a,b满足(x+1)%a==0 && (x-1)%b==0 或者 (x+1)%b==0 && (x-1)%a==0 因为a*b其实就是质因数分解之后某两个因子相乘. 而\((x+1)*(x-1)\)既然是…
推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 50000 #define setIO(s) freopen(s".in","r",stdin) using namespace std; namespace Math { ll pp,answer; ll exgcd(ll a,ll b,ll &x,ll &y…
数论 Orz iwtwiioi 果然数论很捉鸡>_>完全不知道怎么下手 $$x^2 \equiv 1 \pmod n \rightarrow (x+1)*(x-1)=k*n $$ 所以,我们得到$$n | (x+1)(x-1)$$ 那么有什么用呢?注意到整除是个神奇的关系= =所以我们可以令$n=a*b$,那么对于每个x,一定有$a|(x+1) 且 b|(x-1)$ 或是 $a|(x-1) 且 b|(x+1)$ 然后?我们可以$O(\sqrt{n})$枚举a,得到b,然而,x+1(或者x-1)…
转载于http://blog.csdn.net/creationaugust/article/details/513876231000:A+B 1001:平面图最小割,转对偶图最短路 1002:矩阵树定理,也可以通过推矩阵的递推关系得到递推式 1003:最短路+DP 1007:半平面交 1008:组合数学,需要高精 1010:斜率优化/四边形不等式推决策单调性 1012:线段树 1014:Splay维护字符串的Hash值 1016:矩阵树定理,相同权值压联通块,对一个联通块用一次矩阵树定理计算方…
上次看莫比乌斯繁衍反演是一个月前,讲道理没怎么看懂.. 然后出去跪了二十天, 然后今天又开始看发现其实并不难理解   开个这个仅记录一下写过的题. HAOI 2011 B   这应该是莫比乌斯反演的模板题,有很多题解,不多说. CODE: //HAOI 2011 B //by Cydiater //2016.7.25 #include <iostream> #include <cstring> #include <string> #include <algorit…
中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yuangen(LL p,LL phi){ ; ;i*i<=phi;i++) ) f[++c]=i,f[++c]=phi/i; ;;g++){ int j; ;j<=c;j++) ) break; ) return g; } ; } 求原根 void Split(int x){ num=; ;i*i&…
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i=1}^N \sum_{j=1}^N f(ij)&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]\\&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j} \sum_{d|g…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且x^2 \equiv 1 \pmod{n}$的所有$x$ #include <bits/stdc++.h> using namespace std; typedef long long ll; set<ll> s; int main() { ll n; scanf("%lld…
2401: 陶陶的难题I Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 24[Submit][Status] Description 最近陶陶在研究数论,某天他偶然遇到一道题:对于给定的正整数���,求出 下面这样一个式子的值: 其中LCM(a���, b���)表示正整数���和���最小公倍数,即能同时被a���和b���整除的最小正 整数. 作为神犇的陶陶,当然轻松秒杀了这道题.不过他希望你写一个程序,用来 检验他算…
3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description…
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连续的数对答案的贡献成等差数列, 可以O(1)求出..然后就分⌊k / i⌋相等的一块一块来就行了. 分出来大概是sqrt(k)块.这个sqrt(k)我并不会证Orz...写了个程序验证了一下, 分出来的块数和2 * sqrt(k)非常接近. 所以时间复杂度为O(sqrt(k)) ---------------…
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{i\mid n}\sum_{j\mid m}[(i,j)=1]\) 反演得到 \[ \sum_{d=1}^n \mu(d) (g(\frac{n}{d}))^2 \\ g(n) = \sum_{i=1}^n \sigma_0(i) \] 杜教筛\(\mu \ \sigma_0\)的前缀和 当然和前面…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4176 题解: 莫比乌斯反演,杜教筛 首先有这么一个结论: 令d(n)表示n的约数的个数(就是题目中的f(n)),则有 $$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$$ ●BZOJ 3994 [SDOI2015]约数个数和也用到了这个东西. 那么就下来接直接进行求ANS的式子的推导: $$\begin{aligned}ANS&=\sum_{n=1}^{N…
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2…
BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) &= \sum_{i = 1}^{n}\frac{i \times n}{\operatorname{gcd}(i, n)}\\ &= n \times \sum_{i = 1}^{n}\frac{i}{\operatorname{gcd}(i, n)} \end{align*}\] 设\(…