POJ - 2478】的更多相关文章

通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k次幂:$\phi(n)=p^k-p^{k-1}=(p-1)p^{k-1}$,因为除了p的倍数外,其他数都跟n互质. 设n为正整数,以$\phi(n)$表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数. 欧拉函数是积性函数——若m,n互质, $\p…
A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l…
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2.欧拉定理:若a与n互质.那么有a^φ(n) ≡ 1(mod n),经经常使用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1.注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k…
http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很大,所以结果数据类型不要用int,改为long long就没问题了 #include <iostream> #include <stdio.h> using namespace std; #define LL long long LL F[]; ]; void phi_table(in…
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2*f[i]-1. #include <stdio.h> #include <iostream> #include <map> #include <set> #include <stack> #include <vector> #inclu…
 名字是法雷数列其实是欧拉phi函数              Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11246   Accepted: 4363 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 <…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12802   Accepted: 4998 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K       Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. Th…
递推法求欧拉函数: #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; long long phi[maxn]; void make_phi() { ;i<maxn;++i) phi[i]=i; ;i<maxn;++i) { if(phi[i]==i) { for(long long j=i;j<maxn;j+=i) { phi[j]=phi[j…
hdu1787,直接求欧拉函数 #include <iostream> #include <cstdio> using namespace std; int n; int phi(int n){ int ans=n; for(int i=2; i*i<=n; i++) if(n%i==0){ ans -= ans / i; while(n%i==0) n /= i; } if(n>1) ans -= ans / n; return ans; } int main(){…