主要步骤可参考: http://blog.csdn.net/u010194274/article/details/50575284 补充几点: 1. convert函数是ImageMagick包里面的,在使用之前要进行安装 sudo apt-get install ImageMagick 2. 在将图片大小处理为256x256的时候,这里需要注意,数字之间使用的是字母x,而不是乘号 3. shell脚本中使用到的路径,最好都使用绝对路径 4. 作者在网络定义部分说的并不明确,补充如下:solve…
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caffe的网络结构和求解文件,还介绍了如何制作LMDB和Hdf5数据源文件.但是我们还没有完整的介绍过如何在Caffe框架下去训练一个神经网络模型,在本篇博文中我将从最经典.简单的卷积神经网络Lenet(CNN的开端)和最简单的数据集MNIST(手写数字)出发,详细介绍整个网络的训练与测试过程. 1. …
1.数据.mnist_test_lmdb和mnist_train_lmdb数据 2.路径. (1)修改lenet_train_test.prototxt文件,训练和测试两处 source: "....省略/examples/mnist/mnist-train-leveldb" //写上你的绝对路径 backend: LEVELDB //格式改成LEVELDB (2)修改lenet_solver.prototxt文件: net: "....省略/examples/mnist/l…
Ubuntu14.04+caffe+cuda 环境搭建以及MNIST数据集的训练与测试 一.ubuntu14.04的安装: ubuntu的安装是一件十分简单的事情,这里给出一个参考教程: http://jingyan.baidu.com/article/76a7e409bea83efc3b6e1507.html 二.cuda的安装: 1.首先下载nvidia cuda的仓库安装包(我的是ubuntu 14.04 64位,所以下载的是ubuntu14.04的安装包,如果你是32位的可以参看具体的地…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
本文主要来自Caffe作者Yangqing Jia网站给出的examples. @article{jia2014caffe, Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor}, Journal = {arXiv prepr…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2.安装VS和CUDA.CUDNN.OpenCV 1)安装VS2017 2)安装OpenCV 3)VS配置OpenCV 4)安装CUDA10.0和CUDNN7.5 5)VS配置CUDA 3. 编译darknet 4.训练自己的数据集 5.开始训练 6.测试 1.下载适用于Windows的darknet…
参考:http://www.cnblogs.com/denny402/p/5083300.html 上述主要介绍的是从自己的原始图片转为lmdb数据,再到训练.测试的整个流程(另外可参考薛开宇的笔记). 用的是自带的caffenet(看了下结构,典型的CNN),因为没有GPU,整个过程实在是太慢了,因此我将其改为二分类,只留3,4两类训练测试 训练时两类各80张,共160张:测试时两类各20张,共40张. 首先看下solver.prototxt配置文件中各参数的含义 net: "examples…
1.模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内 2. 修改solver.prototxt(用notepad) net: "examples/myfile/train_val.prototxt"    #test_iter: 2test_interval: 50base_lr: 0.001lr_policy: "step"gamma: 0.1…