Regularization on GBDT】的更多相关文章

之前一篇文章简单地讲了XGBoost的实现与普通GBDT实现的不同之处,本文尝试总结一下GBDT运用的正则化技巧. Early Stopping Early Stopping是机器学习迭代式训练模型中很常见的防止过拟合技巧,维基百科里如下描述: In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an itera…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
GBDT 以多分类问题为例介绍GBDT的算法,针对多分类问题,每次迭代都需要生成K个树(K为分类的个数),记为\(F_{mk}(x)\),其中m为迭代次数,k为分类. 针对每个训练样本,使用的损失函数通常为\[L(y_i, F_{m1}(x_i), ..., F_{mK}(x_i))=-\sum_{k=1}^{K}I({y_i}=k)ln[p_{mk}(x_i)]=-\sum_{k=1}^{K}I({y_i}=k)ln(\frac{e^{F_{mk}(x_i)}}{\sum_{l=1}^{K}e…
            阿弥陀佛.好久没写文章,实在是受不了了.特来填坑,近期实习了(ting)解(shuo)到(le)非常多工业界经常使用的算法.诸如GBDT,CRF,topic model的一些算法等.也看了不少东西.有时间能够具体写一下,而至于实现那真的是没时间没心情再做了,等回学校了再说吧.今天我们要说的就是GBDT(Gradient Boosting Decision Tree) =====================================================…
转自 http://blog.csdn.net/u014568921/article/details/49383379 另外一个很容易理解的文章 :http://www.jianshu.com/p/005a4e6ac775 更多参考如下 机器学习(四)— 从gbdt到xgboost 机器学习常见算法个人总结(面试用) xgboost入门与实战(原理篇) Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting R…
1.bootstrap   在原始数据的范围内作有放回的再抽样M个, 样本容量仍为n,原始数据中每个观察单位每次被抽到的概率相等, 为1/n , 所得样本称为Bootstrap样本.于是可得到参数θ的一个估计值θ^(b),这样重复若干次,记为B .为了可以避免一些误差点对少量树的决策影响. 2.决策树 : 信息熵: Ent(D) = - ΣPk*logPk, Ent(D)的值越小,则D的纯度越高           信息增益: ID3中使用, 存在过拟合的情况, 避免过拟合的方法,1. 通过si…
概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa…
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范数(lasso),L2范数(ridge) 2.归一化 (Normalization)   2.1归一化的目的 2.1归一化计算方法 2.2.spark ml中的归一化 2.3 python中skelearn中的归一化 知识总结: 1.正则化(Regularization) 1.1 正则化的目的:我的…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl…