力扣51. N 皇后(回溯法)】的更多相关文章

/* * 八皇后问题回溯法编程练习 * 在8×8的棋盘上,放置8个皇后,两个皇后之间不能两两攻击 * 也即,直线,垂直45度.135度方向不能出现两个皇后 * * copyright Michael 2014-12-19 * QQ 1192065414 **/ #include <iostream> #include <stack> #include <stdlib.h> #include <string.h> using namespace std; st…
八皇后问题:将八个皇后摆在一张8*8的国际象棋棋盘上,使每个皇后都无法吃掉别的皇后,一共有多少种摆法? 两个皇后不能同时在同一行,同一列,和斜对角线的位置上,使用回溯法解决. 从第一行选个位置开始放棋子,第二行从0开始选择满足规则的位置,到第三行发现没有位置可以满足规则,那么就把第二行的棋子向后移动一个可以满足规则的位置,如果没有这个位置,就返回到第一行,将棋子向后移动一个,从头开始,以此类推. 这个同学的博客讲的很通俗易懂 https://www.cnblogs.com/bigmoyan/p/…
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位. 示例: 输入: 4 输出: [ [".Q..", // 解法 1 "...Q", "Q...&…
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int ans = 0; public int totalNQueens(int n) { char mp[][] = new char[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { mp[i][j] = '.'; }…
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度斜线上都不能出现皇后的棋子,例子 要求编程求出符合要求的情况的个数.四皇后问题有很多种解法,这里主要介绍一种经典的解决方法:回溯法 回溯法的基本思想是:可以构建出一棵解空间树,通过探索这棵解空间树,可以得到四皇后问题的一种或几种解.这样的解空间树有四棵 在如上图所示的4×4的棋盘上,按列来摆放棋子,…
/*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ==========================================*/ #include <stdio.h> #include <stdlib.h> #define TRUE 1 #define FALSE 0 #define NUM_QUEEN 4 /* 皇后个数 */ typedef int BOOL; void n_q…
 DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对于给定的N,求出有多少种合法的放置方法.   Input 共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量:如果N=0,表示结束.   Output…
原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上. 2.matlab代码 function PlaceQueen(row,stack,N)%回溯法放置皇后 if row>N PrintQueen(N,stack);%打印棋盘 else for col=1:N stack(row)=co…
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋格不能有其他皇后 解出能将八个皇后都放在棋盘中的摆法 这个问题通常使用两种方法来求解: 穷举法 回溯法(递归) 本文章通过回溯法来求解,回溯法对比穷举法高效许多,让我们学习如何实现吧! 实现思想: 我们先在棋盘的第0行第1个棋格放下第一个皇后 下一行寻找一个不冲突的棋格放下下一个皇后 循环第2步 如…
跟前面的N皇后问题没区别,还更简单 #include "000库函数.h" //使用回溯法 class Solution { public: int totalNQueens(int n) { ; vector<);//标记 NQueue(x, res, ); return res; } void NQueue(vector<int>&x, int &num, int row) { int n = x.size(); if (n == row) num…