Problem: the important frequency information is lack of effective modelling. ?? what is frequency information in time series? and why other models don't model this kind of frequency information? frequency learning we propose two deep learning models:…
Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems. Methodology: 1. convert time series to a high-dim…
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage prediction using ARIMA, Holt Winters etc, so I might be in a good position to advise you on this. Your best option by far is using the R language, yo…
1 总体介绍 在以下主题中,我们将回顾有助于分析时间序列数据的技术,即遵循非随机顺序的测量序列.与在大多数其他统计数据的上下文中讨论的随机观测样本的分析不同,时间序列的分析基于数据文件中的连续值表示以等间隔时间间隔进行的连续测量的假设. 本节描述的方法的详细讨论可以在Anderson(1976),Box and Jenkins(1976),Kendall(1984),Kendall and Ord(1990),Montgomery,Johnson和Gardiner(1990),Pankratz(…
Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question about logistic regression in R. Suppose I have a small list of proteins P1, P2, P3 that predict a two-class target T, say cancer/noncancer. Lets further s…
Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to.  1. the benefit of complex network: complex network theory has been particularly successful in providing unifying统一的 concepts and methods for understanding the structure and dynamics of complex system…
Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDva4V5A-uuOl84mg5zkTECichHX_AsN0mZalfI9BzDFOeNe-G### ❤ Simple linear regression 1. Y = β0 + β1*X + e where: Y - dependent variable (response) X - indepe…
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
It is important to note the distinction between time series and sequential data. In both cases, the data consist of a sequence, or list of values, in which the order is important. Time series is a subclass of sequential data where the longitudinal co…
Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis. Uns…