Hive数仓】的更多相关文章

今天有一个需求需要将一份文档形式的hft与fdd的城市关系关系的数据导入到hive数仓中,之前没有在hue中进行这项操作(上家都是通过xshell登录堡垒机直接连服务器进行操作的),特此记录一下. -- step1 -- 创建表(注意表的存储格式) create table if not exists edw_public.dim_edw_pub_hft_fdd_city_rel_info( hft_city_id bigint comment '好房通城市id', hft_city_name…
(1)Hive 数仓中一些常用的dt与日期的转换操作 下面总结了自己工作中经常用到的一些日期转换,这类日期转换经常用于报表的时间粒度和统计周期的控制中 日期变换: (1)dt转日期 to_date(from_unixtime(unix_timestamp('${dt}','yyyyMMdd'))) (2)日期转dt regexp_replace('${date}','-','') (3)dt转当月1号日期 to_date(from_unixtime(unix_timestamp(concat(s…
在数仓和BI系统的开发和使用过程中会经常出现需要重跑数仓中某些或一段时间内的分区数据,原因可能是:1.数据统计和计算逻辑/口径调整,2.发现之前的埋点数据收集出现错误或者埋点出现错误,3.业务数据库出现人为修改历史数据的情况.当出现第一和第二种情况的时候需要对数仓各层使用到该数据源的表及依赖这些表的数据模型和表的出现问题时间起的分区都重跑一遍,出现第三种情况的时候需要从ods层(数据同步导入层)及以上的各层都重跑一遍.重跑历史分区的操作是比较麻烦的,如果只是把相应的表的workflow一天天的分…
上次已经讲了<Hive数据仓库之快速入门一>不记得的小伙伴可以点击回顾一下,接下来我们再讲Hive数据仓库之快速入门二 DQL hive中的order by.distribute by.sort by和cluster by  order by 全局排序,只有一个Reduce任务 sort by 只做jubu排序 distribute by 用distribute by 会对指定的字段按照hashCode值对reduce的个数取模,然后将任务分配到对应的reduce中去执行 cluster by…
1.Hive的官网上介绍了三个可以在Windows中通过JDBC连接HiveServer2的图形界面工具,包括:SQuirrel SQL Client.Oracle SQL Developer以及DbVisualizer. 2.SQuirrel SQL Client 从http://squirrel-sql.sourceforge.net/下载最新的squirrel-sql,版本为3.7.1,安装后打开. 1. 新建Driver,注意添加运行所依赖的Hive和Hadoop jar包 本人是用3.…
分层设计 ODS(Operational Data Store):数据运营层  "面向主题的"数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取.洗净.传输,也就说传说中的 ETL 之后,装入本层.本层的数据,总体上大多是按照源头业务系统的分类方式而分类的. 一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪.去重.异常值处理等过程可以放在后面的DWD层来做. DW(Data W…
1 创建一个分区表 create table t_partition001(ip string,duration int) partitioned by(country string) row format delimited fields terminated by ','; 2 添加数据 load data local inpath '/root/hivedata/t_partitioned' into table t_partition001 partition(country="Chin…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…
电商业务及数据结构 SKU库存量,剩余多少SPU商品聚集的最小单位,,,这类商品的抽象,提取公共的内容 订单表:周期性状态变化(order_info) id 订单编号 total_amount 订单金额 order_status 订单状态 user_id 用户id payment_way 支付方式 out_trade_no 支付流水号 create_time 创建时间 operate_time 操作时间 订单详情表:(order_detail) order_detail.order_id 是要一…