指数加权平均 (exponentially weighted averges) 先说一下指数加权平均, 公式如下: \[v_{t}=\beta v_{t-1}+(1-\beta) \theta_{t} \] \(\theta_t\) 是第t天的观测值 \(v_t\) 是用来替代\(\theta_t\)的估计值,也就是加权平均值 \(\beta\) 超参数 设 \(\beta = 0.9\) , 那么公式可以化简为: \[v_{100} = 0.1 * \theta_t + 0.1 * 0.9 *…
常用的梯度下降法分为: 批量梯度下降法(Batch Gradient Descent) 随机梯度下降法(Stochastic Gradient Descent) 小批量梯度下降法(Mini-Batch Gradient Descent) 简单的算法示例 数据 x = np.random.uniform(-3,3,100) X = x.reshape(-1,1) y = x * 2 + 5 + np.random.normal(0, 1, 100) BGD 批量梯度下降法的简单实现: def gr…
pytorch1.0进行Optimizer 优化器对比 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt LR = 0.01 # 学习率 BATCH_SIZE = 32 EPOCH = 12…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
[转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76725843 这篇博客格式不好直接粘贴,就不附原文了. 有几个点可以注意下,原文没有写的很清楚: 优化方法的作用是什么? 可以说,没有优化方法,机器学习模型一般一样可以执行,所以说它并不是必须的.但是优化方法可以动态调整学习率以及影响迭代中参数调整的方向和幅度,可以加速收敛,是对原方法的一种优化.…
前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区别呢? # 手写数字识别网络训练方法 network.fit( train_images, train_labels, epochs=5, batch_size=128) 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降算法一般用来最小化损失函数:把原始的数据网络喂给网…
转载  https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法     在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数…
优化器总结 机器学习中,有很多优化方法来试图寻找模型的最优解.比如神经网络中可以采取最基本的梯度下降法. 梯度下降法(Gradient Descent) 梯度下降法是最基本的一类优化器,目前主要分为三种梯度下降法:标准梯度下降法(GD, Gradient Descent),随机梯度下降法(SGD, Stochastic Gradient Descent)及批量梯度下降法(BGD, Batch Gradient Descent). 标准梯度下降法(GD) 假设要学习训练的模型参数为WW,代价函数为…
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  tf.train.GradientDescentOptimizer  Tensorflow中实现梯度下降算法的优化器. 梯度下降:(1)标准梯度下降GD(2)批量梯度下降BGD(3)随机梯度下降SGD (1)标准梯度下降:学习训练的模型参数为W,代价函数为J(W),则代价函数关于模型参数的偏导数即相关…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…