dmesg 中异常打印: kernel: irq 632: Affinity broken due to vector space exhaustion. kernel: irq 633: Affinity broken due to vector space exhaustion. 这个打印并不是申请不到中断号,而是已经申请到了中断号,但是配置中断路由的时候, 想要生效的中断绑核与预期不一致,代码为: commit 743dac494d61d991967ebcfab92e4f80dc7583b…
1. 问题描述 给你若干篇文档,找出这些文档中最相似的两篇文档? 相似性,可以用距离来衡量.而在数学上,可使用余弦来计算两个向量的距离. \[cos(\vec a, \vec b)=\frac {\vec a*\vec b}{||\vec a||*||\vec b||}\] 因此,用向量来表示文档,然后就可以用余弦来计算两篇文章之间的相似度了. 2. 词袋模型 一篇文档里面有很多很多句子,每个句子又是由一个个的词组成.词袋模型,通俗地讲,就是:把一篇文档看成词袋,里面装着一个个的词. 从而,将一…
https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in…
最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它用来作为一个搜索关键字在文档或整个查询词组的权重的计算方式.前几天看了吴军老师的数学之美系列文章,这个TF/IDF可以追…
原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它…
Vector Space Model The vector space model provides a way of comparing a multiterm query against a document. The output is a single score that represents how well the document matches the query. In order to do this, the model represents both the docum…
搜索结果排序是搜索引擎最核心的构成部分,很大程度上决定了搜索引擎的质量好坏.虽然搜索引擎在实际结果排序时考虑了上百个相关因子,但最重要的因素还是用户查询与网页内容的相关性.(ps:百度最臭名朝著的“竞价排名”策略,就是在搜索结果排序时,把广告客户给钱最多的排在前列,而不是从内容质量考虑,从而严重影响了用户体验).这里要讲的就是:给定用户搜索词,如何从内容相关性的角度对网页进行排序.判断网页内容是否与用户查询相关,这依赖于搜索引擎所采用的检索模型,常见的检索模型有:布尔模型.向量空间模型.概率模型…
论文来自Mikolov等人的<Efficient Estimation of Word Representations in Vector Space> 论文地址: 66666 论文介绍了2个方法,原理不解释... skim code and comment : # -*- coding: utf-8 -*- # @time : 2019/11/9 12:53 import numpy as np import torch import torch.nn as nn import torch.…
Mikolov T , Chen K , Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[J]. Computer ence, 2013. 源码:https://github.com/danielfrg/word2vec 文章目的 本文的目的是提出学习高质量的词向量(word2vec)的方法,这些方法主要利用在十亿或者百万词汇的数据集上.因此作者提出了两个新颖的模型(CBOW,Skip…
摘要 本文提出了两种从大规模数据集中计算连续向量表示(Continuous Vector Representation)的计算模型架构.这些表示的有效性是通过词相似度任务(Word Similarity Task)来度量的.实验结果表明,这种方法要优于已有的基于其他类型的神经网络模型的效果.更重要的是,这种方法可以以更低的计算代价获得更高的词相似性预测的准确度.举个例子来说,从16亿词的语料库中学习表示大概需要不到一天的时间.从效果角度来讲,在词的语法与语义相似度方面,达到了领先水平. 背景介绍…