Sum (欧拉定理)】的更多相关文章

规律 欧拉定理: 找规律 2^n-1 ,n 非常大用欧拉定理 Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 1465    Accepted Submission(s): 622 Problem Description   Sample Input 2   Sample Output 2 Hint 1. For N = 2…
Problem Description Sample Input 2 Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases. 解题思路:由于指数很大,要用到欧拉降幂公式,即扩展欧拉定理:$ a^n \equiv a^{n \; mod \;\varphi(p)} (mod \; p)$,其中$gcd(a, p) = 1$.题目的意思就是给出一个N,…
题面 提示:无限输入 题解 一看这题的数据 ............................... 这也太大了,必须边输入边取模才行, 但是式子很复杂,所以必须推出一些结论. 因为Xk是有顺序的,所以相当与给班级分名额的经典组合数例子,S(k)就等于C(N-1,K-1) 答案应该是  这是不是就是杨辉三角的第n行的和? 因为杨辉三角的第n行所有的数都是由顶上的那一个1得到的,每一个数aij对下一行的贡献都是2aij,所以开头的那一个1对第n行的贡献就是 1<<n ,也就是2^(n-1)…
[BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varphi\)的限制 就不用再计算了 如果需要计算就每次暴力算 这样的复杂度\(O(nlog^2)\) #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<…
题目描述 给出三个整数p,k,a,其中p为质数,求出所有满足x^k=a (mod p),0<=x<=p-1的x. 输入 三个整数p,k,a. 输出 第一行一个整数,表示符合条件的x的个数. 第二行开始每行一个数,表示符合条件的x,按从小到大的顺序输出. 样例输入 11 3 8 样例输出 1 2 提示 2<=p<p<=10^9 2<=k<=100000,0<=a 首先求出$p$的原根$g$,再求出$a$的指标$b$,即$g^b\equiv a(mod\ p)$…
欧拉定理题意: 给你N 个点,按顺序一笔画完连成一个多边形 求这个平面被分为多少个区间 欧拉定理 : 平面上边为 n ,点为 c 则 区间为 n + 2 - c: 思路: 先扫,两两线段的交点,存下来,有可能会有重复点, 用STL unique 去重 在把每个点判断是否在线段上,有,则会多出一条线段(不包括端点的点) 这样就得出结果了 O(n * n )   /// 这题还有点卡精度, 1e-11 WA, 1e-9 A了--. #include<iostream> #include<cs…
传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓展欧拉定理:$a^b \equiv a^{b \mod \varphi (p) + \varphi (p)} \mod p$,而当$b < p$时有更强的结论$a^b \equiv a^{b \mod \varphi (p)} \mod p$.我们发现利用拓展欧拉定理可以递归下去处理$2^{2^{2…
巨难!!! 去年六省联考唯一的一道黑牌题,我今天一天从早到晚,把它从暴力15分怼到了90分,极端接近正解了. bzoj上A了,但是洛谷和loj上面就不行.伪正解会T,奇奇怪怪的类正解会WA.. 那么,网上的题解多得很,我就不细说了. 着重说一下我的理解感受和坑点. 1.不愧是黑牌题,显得十分的繁杂(并不). 首先要用到扩展欧拉定理,φ(),还有线段树辅助,快速幂,大量奇奇怪怪的小细节.....要人命啊. 2.根据之前那题上帝集合,我们可以得知当一个数被操作很多很多很多很多次之后就不变了,成为一个…
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度可以描述的,这也是常识. 所以,此题要用到很多数论知识. 欧拉函数 定义 \(\varphi(n)\) 为 \([1,n]\) 中与 \(n\) 互质的正整数个数(包括 \(1\)). 通式 \(\displaystyle \varphi(n)=n\prod_{p|n}(1-{1\over p})\…
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where each digit is either 0, 1, or 2. Chiaki has a ternary string s which can self-reproduce. Every second, a digit 0 is inserted after every 1 in the str…