在处理大规模数据时,数据无法全部载入内存,我们通常用两个选项 使用tfrecords 使用 tf.data.Dataset.from_generator() tfrecords的并行化使用前文已经有过介绍,这里不再赘述.如果我们不想生成tfrecord中间文件,那么生成器就是你所需要的. 本文主要记录针对 from_generator()的并行化方法,在 tf.data 中,并行化主要通过 map和 num_parallel_calls 实现,但是对一些场景,我们的generator()中有一些…
二维码Data Matrix的介绍可以参考http://blog.csdn.net/fengbingchun/article/details/44279967 ,以下是通过zxing-cpp开源库实现的对Data Matrix进行解码的测试代码: #include "funset.hpp" #include <string> #include <fstream> #include <Windows.h> #include <zxing/Lumi…
二维码Data Matrix的介绍见: http://blog.csdn.net/fengbingchun/article/details/44279967  ,这里简单写了个生成二维码和对二维码进行识别的测试例子,如下: int test_data_matrix_encode() { std::string str = "中国_abc_DEF_123_@#$!HTTP://WWW.LIBDMTX.ORG"; DmtxEncode* enc = dmtxEncodeCreate();…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and data engineering, 2013, 26(1): 97-107. 大数据中的数据挖掘 Xindong Wu, Fellow, IEEE, Xingquan Zhu, Senior Member, IEEE, Gong-Qing Wu, and Wei Ding, Senior Member,…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…