目录 1 介绍 1.1 什么是Homography 1.2 使用Homography进行图像对齐 1.3 Homography的应用-全景拼接 2 Homography的计算 3 总结 4 参考 <圣经>记载,当时人类联合起来兴建希望能通往天堂的高塔:为了阻止人类的计划,上帝让人类说不同的语言,使人类相互之间不能沟通,计划因此失败. 像"Homography"这样的术语经常提醒我,我们仍然在与沟通斗争.Homography(单应性)是一个简单的概念,却有一个奇怪的名字! 1…
1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kpA, kpB, cv2.RANSAC, reproThresh) # 计算出单应性矩阵 参数说明:kpA表示图像A关键点的坐标, kpB图像B关键点的坐标, 使用随机抽样一致性算法来进行迭代,reproThresh表示每次抽取样本的个数 3.cv2.warpPespective(imageA, H,…
求解相机参数的过程就称之为相机标定. 1.相机模型中的四个平面坐标系: 1.1图像像素坐标系(u,v) 以像素为单位,是以图像的左上方为原点的图像坐标系: 1.2图像物理坐标系(也叫像平面坐标系)(x,y) 以毫米为单位,用物理单位表示图像像素位置,定义坐标系OXY,原点O定义在相机Zc轴与图像平面交点: 1.3相机坐标系(Xc,Yc,Zc) 以毫米为单位,以相机的光心作为原点,Zc轴与光轴重合,并垂直于成像平面,且取摄影方向为正方向,Xc.Yc轴 与图像物理坐标系的x,y轴平行,且OcO为摄像…
本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform():计算3个二维点对之间的仿射变换矩阵H(2行x3列),自由度为6. warpAffine():对输入图像进行仿射…
仿射 estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform():计算3个二维点对之间的仿射变换矩阵H(2行x3列),自由度为6. warpAffine():对输入图像进行仿射变换 estimateAffine3D:计算多个三维点对之间的最优三维仿射变换矩阵H (3行x4列) transform():对输入的N维矢量进行变换,可用于进行仿射变换.图像色彩变换.…
上篇 OpenCV 之 图象几何变换 介绍了等距.相似和仿射变换,本篇侧重投影变换的平面单应性.OpenCV相关函数.应用实例等. 1  投影变换 1.1  平面单应性 投影变换 (Projective Transformation),是仿射变换的泛化 (或普遍化),二者区别如下: 假定平面 $P^{2}$ 与 $Q^{2}$ 之间,存在映射 $H_{3 \times 3}$,使得 $P^{2}$ 内任意点 $(x_p, y_q, 1)$,满足下式: $\quad \begin{bmatrix}…
矩阵的一个重要作用是将空间中的点变换到另一个空间中.这个作用在国内的<线性代数>教学中基本没有介绍.要能形像地理解这一作用,比较直观的方法就是图像变换,图像变换的方法很多,单应性变换是其中一种方法,单应性变换会涉及到单应性矩阵.单应性变换的目标是通过给定的几个点(通常是4对点)来得到单应性矩阵.下面单应性矩阵的推导过程. $$ H= \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{…
git:https://github.com/linyi0604/Computer-Vision 匹配准确率非常高. 单应性指的是图像在投影发生了 畸变后仍然能够有较高的检测和匹配准确率 # coding:utf-8 """ 单应性匹配: 两幅图像中的一幅 出现投影畸变的时候,他们还能彼此匹配 """ import cv2 import numpy as np # 最小匹配数量设为10个, 大于这个数量从中筛选出10个最好的 MIN_MATCH_…
一.基础概念 1. projective transformation  = homography = collineation. 2. 齐次坐标:使用N+1维坐标来表示N维坐标,例如在2D笛卡尔坐标系中加上额外变量w来形成2D齐次坐标系$(x,y) \Rightarrow (x,y,w)$ 齐次坐标具有规模不变性,同一点可以被无数个齐次坐标表达.$(x,y,1) \Rightarrow (ax,ay,a)$ 齐次坐标转化为笛卡尔坐标可以通过同除最后一项得到. 3. 单应性变换是对齐次坐标下点的…
目录 1 背景介绍 1.1 什么是图像分割和实例分割 1.2 Mask-RCNN原理 2 Mask-RCNN在OpenCV中的使用 2.1 模型下载 2.2 模型初始化 2.3 模型加载 2.4 输出结果处理 2.5 画图 3 结果和代码 3.1 结果 3.2 代码 4 参考 Mask R-CNN具体内容见: https://arxiv.org/pdf/1703.06870.pdf Mask R-CNN最初于2017年11月由Facebook的AI研究团队使用Python和Caffe2推出.工程…