首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Iceberg 数据治理及查询加速实践
】的更多相关文章
Data.gov.uk电子政务云,牛津大学NIE金融大数据实验室王宁:数据治理的现状和实践
牛津大学NIE金融大数据实验室王宁:数据治理的现状和实践 我是牛津互联网研究院的研究员,是英国开放互联网的一个主要的研究机构和相关政策制订的一个机构.今天主要给大家介绍一下英国数据治理的一些现状和实践.Data.gov.uk就是相当于英国的电子政务云.我不知道大家还记不记得这个画面,这是2012年伦敦奥运会的时候,当时的一幕,一个房子拉开了之后一个人在里面座着打计算机,这个人是一个英国籍也是牛津大学毕业的科学家,也是万维网之父.他当时创造互联网时候当时是一个博士生,他有一个想法就是说能不能有一个…
李呈祥:bilibili在湖仓一体查询加速上的实践与探索
导读: 本文主要介绍哔哩哔哩在数据湖与数据仓库一体架构下,探索查询加速以及索引增强的一些实践.主要内容包括: 什么是湖仓一体架构 哔哩哔哩目前的湖仓一体架构 湖仓一体架构下,数据的排序组织优化 湖仓一体架构下,索引增强与优化的实践探索 -- 01 什么是湖仓一体 当我们讲湖仓一体时,涉及到数据湖和数据仓库两个概念. 什么是数据湖?通常来说,它有以下几个特点: 有一个统一的存储系统,所有的数据都放到这个统一的存储系统里,没有数据孤岛. 支持任意数据类型,比较自由,包括结构化.半结构化和非结构化的数…
Nebula Graph 在微众银行数据治理业务的实践
本文为微众银行大数据平台:周可在 nMeetup 深圳场的演讲这里文字稿,演讲视频参见:B站 自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况. 先来说下图数据库应用背景. WeDataSphere 图数据库架构是基于 JanusGraph 搭建,正如邸帅在演讲<NebulaGraph - WeDataSphere 开源介绍>中提及的那样,主要用于解决微众银行数据治理中的数据血缘问题.在使用 Jan…
好未来数据中台 Node.js BFF实践(一):基础篇
好未来数据中台 Node.js BFF实践系列文章列表: 基础篇 实战篇(TODO) 进阶篇(TODO) 好未来数据中台的Node.js中间层从7月份开始讨论可行性,截止到9月已经支持了4个平台,其中3个平台生产环境稳定,另1个在测试阶段近期上线. 我4月份刚加入数据中台,原本的想法是半年内不做大刀阔斧的改变,优先完善团队现有的基建设施,比如组件库.charts库.工具.规范等.Node.js中间层的立项完全是一个意外. 某次中台周例会上讨论到前后端协作效率问题,我一时嘴贱提到Node.js中间…
数据治理之元数据管理的利器——Atlas入门宝典
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程.作为Hadoop生态最紧密的元数据管理与发现工具,Atlas在其中扮演着重要的位置.但是其官方文档不是很丰富,也不够详细.所以整理了这份文档供大家学习使用. 本文档基于Atlas2.1.0版本,整理自部分官网内容,各种博客及实践过程.文章较长,建议收藏.新版本的文档请关注公众号 大数据流动,会持续的更新~ 本文档共分为8个部分,层级结构如下图所示. 文档版权为公众号 大数据流动 所有,请勿商用.相关技术问题以及安装包可以联系…
火山引擎 DataLeap:3 个关键步骤,复制字节跳动一站式数据治理经验
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维.治理.资产.安全等全套数据中台建设,降低工作成本和数据维护成本.挖掘数据价值.为企业决策提供数据支撑. 本篇文章主要围绕火山引擎 DataLeap 一站式数据治理实践展开分享,从数据治理思路.平台建设以及能力升级三个步骤出发,带你全面复制字节跳动数据治理经验. ▌机遇与挑战 数据治理存在落地困难的问题,体…
MySQL大数据量分页查询
mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1. 直接用limit start, count分页语句, 也是我程序中用的方法: select * from product limit start, count当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下: select * from product limit 10, 20 0.016秒select * from p…
一文读懂 Spring Boot、微服务架构和大数据治理三者之间的故事
微服务架构 微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物.互联网时代的产品通常有两类特点:需求变化快和用户群体庞大,在这种情况下,如何从系统架构的角度出发,构建灵活.易扩展的系统,快速应对需求的变化:同时,随着用户的增加,如何保证系统的可伸缩性.高可用性,成为系统架构面临的挑战. 如果还按照以前传统开发模式,开发一个大型而全的系统已经很难满足市场对技术的需求,这时候分而治之的思想被提了出来,于是我们从单独架构发展到分布式架…
【1】MySQL大数据量分页查询方法及其优化
---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千级)---原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃. ---方法2: 建立主键或唯一索引, 利用索引(假设每页10条)---语句样式: MySQL中,可用如下方法…
MySQL大数据量分页查询方法及其优化
MySQL大数据量分页查询方法及其优化 ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千级)---原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃. ---方法2: 建立主键或唯一索引, 利用索引(假设每页10条)…