[AI]-模型测试和评价指标】的更多相关文章

模型测试 import cv2 from torchvision import transforms, datasets, models from torch.utils.data import DataLoader import torch import numpy as np import os from sklearn import metrics import matplotlib.pyplot as plt device = torch.device("cuda:2" if…
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 满足和优化指标 Stisficing and optimizing metrics 有时候把你要考虑的所有事情组合成单实数评估指标,有时候并不容易,这时候使用满足和优化指标很重要. 假设以下是一个猫分类器,在我们已经考虑准确度的情况下,我们还要考虑运行时间(即区分一张猫图片所用的时间) 我们的做法是在满足运行时间的条件下,最大限度的提高准确度.例如我们这里选取运行时间必须满足小于100ms的条件…
微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析,关键驱动程序分析,机器学习模型创建和Azure机器学习集成,旨在展示数据科学家的工作以及授权更多用户利用人工智能.   提供AI模型构建器 微软人工智能平台公司副总裁埃里克·博伊德在接受VentureBeat采访时说:“我认为能够接触到更广泛的受众,包括认知服务点亮和Power BI--这很酷.”…
二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错误(真实为0,预测为1) TN(True Negative):预测为负类,且预测正确(真实为0,预测也为0) FN(False Negative):预测为负类,但预测错误(真实为1,预测为0) TP+FP+TN+FN=测试集所有样本数量. 分类模型的性能评价指标(Performance Evalua…
回归模型的性能评价指标(Performance Evaluation Metric)通常有: 1. 平均绝对误差(Mean Absolute Error, MAE):真实目标y与估计值y-hat之间差值的平均值 (注:m为测试集样本数量,下同) 2. 均方误差(Mean Squared Error, MSE):真实目标y与估计值y-hat之间差值的平方的平均值 对比平均绝对误差,均方误差对异常值更敏感. 3. 均方根误差(Root Mean Squared Error, RMSE):均方误差的方…
背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练,I/O 的性能都会显著影响整体 pipeline 的效率,甚至是最终的模型质量. 我们也逐渐看到容器化成为 AI 训练的趋势,利用容器可以快速弹性伸缩的特点,结合公有云的资源池,能够最大化资源利用率,为企业大大节约成本.因此也就诞生了类似 Kubeflow 和 Volcano 这样的开源组件,帮助…
摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的参数量和计算量,需要耗费越来越多的硬件资源,也给模型在移动端的部署带来了新的挑战. 能不能像哆啦A梦一样,变出一条缩小隧道,不管再大的模型,塞进去后就能变小变轻,在寸土寸金的AI硬件资源上身轻如燕- 答案是:当然可以! 通常来说,想要构建深度学习领域的模型缩小隧道,加速模型推理部署,一般需要借助量化…
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/300 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 一份来自『RESEARCH AND MARKETS』的二手车报告预计,从 2022 年到…
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/309 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 只要给到足够的相关信息,AI模型可以迅速学习一个新的领域问题,并构建起很好的知识和预估系统…
前言: 炸金花这款游戏, 从技术的角度来说, 比德州差了很多. 所以他的AI模型也相对简单一些. 本文从EV(期望收益)的角度, 来尝试构建一个简单的炸金花AI. 相关文章: 德州扑克AI--Programming Poker AI(译).  系列文章说来惭愧, 之前一直叫嚷着写德州AI, 不过可惜懒癌晚期, 一直没去实践, T_T. 相比而言,***简单很多, 也更偏重于运气和所谓的心理对抗. 系列文章: 1. 炸金花游戏的模型设计和牌力评估  2. 炸金花游戏的胜率预估 3. 基于EV(期望…