[CSU1911]Card Game(FWT)】的更多相关文章

[vjudge-CSU1911] FWT_or #include<cstring> #include<iostream> #include<algorithm> #define debug(...) fprintf(stderr,__VA_ARGS__) #define Debug(x) cout<<#x<<"="<<x<<endl using namespace std; typedef long l…
[CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中,一定是两个长度为\(2^n\)的二进制串的对应值都是\(1\). 考虑每个人投票的贡献,如果是\(00\)或者\(11\)那么有两种排列,如果是\(01\)或者\(10\)就只有一种合法排列. 那么对于长度为\(2^n\)的数组自己对自己做一次异或卷积,每个数的贡献就是\(2\)的\(0\)的个数…
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可以将一行或者一列的\(01\)全部翻转 回答表格中最少有多少个\(1\) 题解 发现\(n\)很小,\(m\)很大 状压是跑不掉了 如果我们确定翻转哪些行,那么答案唯一确定(贪心的选每一列中\(0/1\)的较小值) 相同的列显然可以合并, 把每一列按照\(01\)状压,记\(a[i]\)为状态为\(i\)的列…
「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. 洛谷上不开 \(O_2\) 根本过不去,自带大常数被卡到 \(15\) 分... 首先题了读了很久,发现一个州的集合可以不连通... 我们可以 \(O(n^22^n)\) 检验每一个状态是否满足条件,用并查集即可. \(f[S]\) 为状态 \(S\) 时的满意度之和,\(g[S]\) 当状态 \…
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为\(0..m-1\)的所有子树的个数 题解 考虑\(dp\) 设\(f[i][j]\)表示以\(i\)为根节点的子树中,异或和为\(j\)的子树的个数 很显然,每次合并就是两个\(dp\)值做\(xor\)卷积 那么直接用\(FWT\)优化就行了 #include<iostream> #inclu…
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其贡献是\(2^s\). 于是我们可以弄出若干个\((1+2x^{a_i})\)这样子的多项式,然后异或卷积把它们卷起来就是答案. 根据\(FWT\)异或卷积的理论,如果\(i\)位置有一个\(1\),那么\(FWT\)之后对于\(j\)位置的贡献是\(-1^{pop\_count(i\&j)}\).…
题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting of n rows and m columns. Each cell of the table contains either 0 or 1. In one move, you are allowed to pick any row or any column and invert all value…
定义 FWT是一种快速完成集合卷积运算的算法. 它可以用于求解类似 $C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$ 的问题. 其中⊗代表位运算中的|,&,^的其中一种. 求解(正变换) 设F(A)是对于A的一种变换. 并且F(A)要求满足:  $F(A)*F(B)=F(A⊗B)$ ①  $k*F(A)=F(k*A)$   ②   $F(A+B)=F(A)+F(B)$  ③ (A,B长度相同) 鉴于FWT和FFT长得特别像(而且求解的问题也比较类似),我们可以借鉴一下FFT…
题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 998244353\) . \(n, a_i \le 10^6\) 题解 简单转化一下,其实就是对于每个选取集合中元素异或积为 \(0\) 的集合,都会有 \(2^{|S|}\) 的贡献. 用集合幂级数形式写出来其实就等价于: \[ \prod_{i = 1}^{n} (1 + 2x^{a_i}) \]…
题面 传送门 设\(a\)的递推公式为 \[a_i=\sum_ja_jb[count(i\oplus j)]\] 其中\(\oplus\)为异或,\(count(i)\)表示\(i\)的二进制中\(1\)的个数 给出\(a_0,b\),求\(a_t\),\(t\leq 10^{18}\) 题解 如果我们定义\(c_i=b[count(i)]\) 这显然就是个异或卷积了--因为要卷\(t\)次,所以点值表示乘起来的时候要把\(c_i\)快速幂一下 然而有个尴尬的问题就是这里的模数可能是偶数--那么…