Receptive field 可中译为“感受野”,是卷积神经网络中非常重要的概念之一. 我个人最早看到这个词的描述是在 2012 年 Krizhevsky 的 paper 中就有提到过,当时是各种不明白的,事实上各种网络教学课程也都并没有仔细的讲清楚“感受野”是怎么一回事,有什么用等等.直到我某天看了 UiO 的博士生 Dang Ha The Hien写了一篇非常流传甚广的博文:A guide to receptive field arithmetic for Convolutional Ne…
Receptive Field Block Net for Accurate and Fast Object Detection 作者:Songtao Liu, Di Huang*, and Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University, Beijing 100191, China fliusongtao, dhuang, yhwangg@bu…
1. 阅读论文:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解感受野 定义:receptive field, or field of view (感受野) A unit in convolutional networks only depends on a region of the input. This region in the input is the recepti…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
论文:Receptive Field Block Net for Accurate and Fast Object Detection 发表时间:2018 发表作者:(Beihang University)Songtao Liu, Di Huang, Yunhong Wang 发表刊物/会议:ECCV 论文链接:论文链接 一些检测论文会依赖很深的 CNN 网络来提升效果,但此类网络会牺牲运行速度.在 RFB 论文中,作者由视觉感受野(Receptive Fields)出发提出了感受野 RFB 模…
Receptive Field Block Net for Accurate and Fast Object Detection 简介 本文在SSD基础上提出了RFB Module,利用神经科学的先验知识来解释这种效果提升.本质上是设计一种新的结构来提升感受野,并表明了人类视网膜的感受野有一个特点,离视线中心越远,其感受野是越大的,越靠近视线中间,感受野越小.基于此,本文提出的RFB Module就是来模拟人类这种视觉特点的. RFB Module 结构如下图所示. 为什么要用空洞卷积呢? 首先…
Sparse Interactions, Receptive Field and Parameter Sharing是整个CNN深度网络的核心部分,我们用本文来具体分析其原理. 首先我们考虑Feedforward Neural Network,L层的输出矩阵,等于L层的输入矩阵与L层的权重矩阵做矩阵乘法,而后进行非线性变换.也就是说,L层的每一个输出数据,与L层的每一个输入数据都有关系.若输入数据是m维,输出数据是n维,则存在m*n个权重项来表征输入与输出间的关系.所以,Forward-prop…
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值.从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小.而初始位置的切线的斜率a > 0(也即该位置对应的导数大于0),w = w – a 就能够让 w 的值减小,循环求导更新w直到 J(w) 取得最小值.如果…