bzoj1221软件开发 费用流】的更多相关文章

题目传送门 思路: 网络流拆点有的是“过程拆点”,有的是“状态拆点”,这道题应该就属于状态拆点. 每个点分需要用的,用完的. 对于需要用的,这些毛巾来自新买的和用过的毛巾进行消毒的,流向终点. 对于用完的,来自源点,可以用于消毒,连向需要用的点,还有一些毛巾留到明天消毒(其实意思是,消完毒,延后使用,但是这样建边麻烦). 挺不错的题目吧. 一个非常坑的地方就是,a和b可能大于1000,所以拆点的点的编号要很小心,要判断一下是否越界. 推荐一个博客.大佬的博客 #include<bits/stdc…
软件开发 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用.消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒…
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用.消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用):而且f>fA>fB.公司经…
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i] $个毛巾进行消毒(因为$x_{i ,1} $已经流向汇点). 1. 源点向$x_{i,1} $连容量为$inf$, 费用为$f$ 的边, 表示给买毛巾. 2. $x_{i, 1}$向汇点连容量为$nd[ i ]$ , 费用为$0 $的边, 表示提供服务 3.$x_{i, 1}$ 向$x_{i +…
[HNOI2001] 软件开发 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1938  Solved: 1118[Submit][Status][Discuss] Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用.消毒方式有两…
题目描述:   某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用.消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用):而且f>fA>fB.…
容易看出这是显然的费用流模型. 把每天需要的餐巾数作为限制.需要将天数拆点,x’表示每天需要的餐巾,x’’表示每天用完的餐巾.所以加边 (s,x',INF,0),(x'',t,INF,0). 餐巾可以新买.所以需要加边(s,x'',INF,f). 没用完餐巾可以留到下一天,所以加边(x',x+1',INF,0). 送往快洗店,加边(x',x+a+1'',INF,fa). 送往慢洗店,加边(x',x+b+1'',INF,fb). 跑一遍费用流即可.由于该图是一种特殊的结构,类二分图结构.用ZKW费…
Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用.消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用):而且f>fA>…
这题是基于一道经典的费用流模型. 将每天拆成两个点i和j,新增源和汇并建立六种边: 1.从源出发到每个i点,flow为+∞,cost为每条新餐巾的价值,表示这一天所使用的餐巾中来自购买的餐巾 2.从源出发到每个j点,flow为每天所需的餐巾数,cost为0,表示这一天最多可使用的餐巾 3.从每个i点出发至汇,flow为每天所需的餐巾数,cost为0,表示这一天应该使用的餐巾 4.从每个j点出发至下一个j点,flow为+∞,cost为0,表示这一天使用后的餐巾移至下一天 5.从每个j点出发至下a个…
几乎为“线性规划与网络流24题”中的餐巾问题. 这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流). 引用题解: [问题分析] 网络优化问题,用最小费用最大流解决. [建模方法] 把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T. 1.从S向每个Xi连一条容量为ri,费用为0的有向边.2.从每个Yi向T连一条容量为ri,费用为0的有向边.3.从S向每个Yi连一条容量为无穷大,费用为p的有向边.4.从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大…