题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\(f(i, k) = \sum_{j=0}^{n-1} f(i-1, j) f(i-1, k^j), f(1, i(2 \le i \le L))=1\),其中\(n=min(2^i, 2^i > L)\).发现其实这就是操作为\(xor\)的卷积.于是用鬼畜的fwt做就行了. 题解 然后fwt+快…