O、Θ、Ω&主定理】的更多相关文章

第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于DFS,我们有$T(1)=O(\log k)$,$T(k)=4T(\frac{k}{2})+O(k^2)$. 根据主定理,$O(n^{\log_ba})=O(n^2)$.故时间复杂度为$O(k^2\log k)$,即$O(2^{2n}n)$. #include<cstdio> #include&l…
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理的判别方法,可知对于 T(n)=O(n)+4⋅T(n/2),a=4,b=2,则 f(n)=O(n)<nlogab=2,符合第一个判别式,因此,T(n)=O(n2)…
前言 虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们.因此借着这个机会把主定理整个梳理一遍. 介绍 主定理(Master Theorem)提供了用于分析一类有递归结构算法时间复杂度的方法.这种递归算法通常有这样的结构: def solve(problem): solve_without_recursion() for subProblem in problem: solve(su…
1.这些是时间复杂度的.(e.g. O(n).Θ(n).Ω(n)) 主要为主定理(坏东西) 2.本质 O <= Θ = Ω >= 3.(你可以把他们都试一遍)主要用处(目前,2020-09-24): 如: \[恶心的主定理: \\ if: T(n)=aT(\frac{n}{b})+f(n) \\ 1.若f(n)=O(n^{log_ba-ε})\ and\ ε>0 \\ 那么T(n)=Θ(n^{log_ba}) \\ 2.f(n)=Θ(n^{log_ba}) \\ 那么T(n)=Θ(n^{…
英文原版不上了 直接中文 定义 假设有递推关系式T(n)=aT(n/b)+f(n) 其中n为问题规模 a为递推的子问题数量 n/b为每个子问题的规模(假设每个子问题的规模基本一样) f(n)为递推以外进行的计算工作,无需参加递归 定理 a≥1,b>1为常数,f(n)为函数,T(n)为非负整数.则有以下结果(分类讨论): (1)若f(n)=O(nlogba-ε)存在ε>0,就是当nlogba的阶高于f(n)时,可以存在ε使得nlogba-ε和f(n)的阶相同.此时取T(n)=θ(nlogba)…
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的造访. 前置技能 多项式相关 形同 \(P(X)=a_0+a_1X+a_2X^2+\cdots+a_nX^n\) 的形式幂级数 \(P(X)\) 称为多项式.其中 \(\{a_i|i\in[0,n]\}\) 为多项式的系数: \(n\) 表示多项式的次数. 多项式的系数表示 对于 \(n\) 次多项…
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代实现 快速数论变换 原根 算法实现 模数任意的解决方案 应用 快速卷积 多项式求逆 基本概念 求解方法 算法实现 求第二类斯特林数 第二类斯特林数 \(\text{NTT}\) 优化 快速沃尔什变换 \(xor\) 卷积 结论(三种卷积求法) 正向 \(\text{tf}\) 逆向 \(\text{…
前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n)/O(n^2)/O(nlog_2n)/O(2^n)\)等等... 我们叫它程序的渐进时间复杂度,例如一段程序执行这样的循环: for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dist[i][j]=min(d…
算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法,有递推关系式的算法,可以很快求出其复杂度. 定义如下: 如果对证明感兴趣的可以翻阅书籍:<算法导论>.如果觉得太难思考,可以跳过该节. 由于主定理的公式十分复杂,所以这里有一种比较简化的版本来计算: 二.举例 二分搜索,每次问题规模减半,只查一个数,递推过程之外的查找复杂度为O(1),递推运算时…
1.ctex:要求用Tex编辑器进行作业的书写 2.与东大本科有差距,还需要多点努力才行. 3. 4.考试不考概念 5. 6.时间复杂度和空间复杂度 7.算法好坏的评价标准 8.基本运算 9.时间复杂度 10.第二章:重要的来了 11. 12. 13. 假设矩阵A为n*m,矩阵B为m*n ,则AxB计算时,A矩阵的第一行的第一个元素要进行n次乘法运算,(而不是m次),A矩阵共有 n×m个元素,故总的需要n*m*n次乘法运算.若取 m=n,则时间复杂度为 O(n^3) 14.递归算法的复杂性 15…